Passengers' Perception of and Behavioral Adaptation to Unreliability in Public Transportation

Andre Carrel, Anne Halvorsen, Joan L. Walker
Civil and Environmental Engineering | University of California, Berkeley

Introduction and Motivation

What is Reliability?
- Commonly associated with travel time variability, but other considerations as well such as schedule adherence, arrival punctuality, probability of finding a seat, or the chance of mechanical problems.
- More comprehensive view of reliability involves repeatability and predictability, and adherence to some "base line.
- Unreliability is dependent on what a passenger perceives as normal; unreliability may be predictable!

How Does Reliability Affect Ridership?
- Previous surveys have been done on the importance of reliability aspects
 - Had no behavioral component (link to ridership)
- Current behavioral models are based on travel time distributions
 - Assume travelers understand statistics
 - Assume rational decisions
 - But are passengers truly knowledgeable?
- Our approach: Exploratory survey to investigate passengers’ long-term adaptation to transit unreliability
 - Learn what strategies passengers use to deal with unreliability
 - Understand influence of prior experiences with unreliability on adaptation strategies
 - Determine if there is a link between previous experiences and people’s perceptions of reliability
 - Try to show that passengers care about more than just the bus arrives: type of delay and when it occurs are also important

Research Approach

- An online survey was distributed to current and former users of the San Francisco Municipal Transit Authority (MUNI)
- Two surveys were created for current MUNI users and for ex-MUNI users. They contained the following parts:
 - Frequency of use and knowledge of the system
 - Identification of a common trip
 - Experiences with each of 26 types of unreliability incidents
 - Users were asked the last time they encountered incident (e.g., for frequency) on how they perceived the impact of the incident on their journey.
- 123 complete responses from users and 15 from non-users were received.

Survey Results

- Socio-demographics: Because the sample population was affiliated with UCSF, it does not entirely mirror San Francisco’s population: they were younger, more educated, and more female. However, many answered that they did have other means of transportation available to them (e.g., bikes, cars, or car sharing memberships).

- Importance of Reliability: Passengers were asked to describe how important several measures of unreliability were for a chosen trip. For both work and non-work trips:
 - Most Important= frequent, consistent service (e.g., can make connection, can walk up to stop without leaving within 10 min)
 - Least Important= comfort (e.g., crowding, ability to find a seat)

- Experiences of Unreliability: Incidents were reported as being seen less than once per month on average to almost never (on a scale of ‘100’ points, where 0 is ‘never’). The full rankings, controlled for frequency of use, can be seen in table 1 above.

- Behavioral Adaptation: Over 95% of respondents reported either having a “strategy” for dealing with unreliability or having reduced their use of the service, and 62% repeat an adaptation. Some of these strategies are described by figures 1 and 2, above.

- Trip Planning: Respondents were very likely to know how long their trip would take (95%) and where they should depart (98%). The use of real-time information was also common: 83% refer to it rather than a schedule and 57% check it before going to a stop.

- Non-User Results: Unreliable service and service cuts were both given as reasons for leaving MUNI by a large proportion of the group (50% and 40%, respectively). They also tended to be different demographically than users, being older, more likely to live outside SF, and more likely to have children, so lifestyle changes may also play a part in their mode shifts.

An online survey was distributed to current and former users of the San Francisco Municipal Transit Authority (MUNI) to determine the frequency of unreliability experiences for than once/month (except

<table>
<thead>
<tr>
<th>Unreliability Incident</th>
<th>Frequency of Use</th>
<th>Knowledge of System</th>
<th>Identification of a Common Trip</th>
<th>Experiences of Unreliability</th>
<th>Behavioral Adaptation</th>
<th>Trip Planning</th>
<th>Non-User Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>0.06</td>
<td>0.89</td>
<td>0.06</td>
<td>0.89</td>
<td>0.06</td>
<td>0.89</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 1: Frequency of Unreliability Incidents

<table>
<thead>
<tr>
<th>Mode Access</th>
<th>Frequency of Use</th>
<th>Knowledge of System</th>
<th>Identification of a Common Trip</th>
<th>Experiences of Unreliability</th>
<th>Behavioral Adaptation</th>
<th>Trip Planning</th>
<th>Non-User Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidents were reported as being seen less than once per month on average to almost never (on a scale of ‘100’ points, where 0 is ‘never’). The full rankings, controlled for frequency of use, can be seen in table 1 above.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mode Access:
1. Live in a neighborhood close to UCSF 0.39 0.4
2. Have a phone with a data plan 1.24 0.01
3. Live outside SF, and more likely to have children, so lifestyle changes may also play a part in their mode shifts.

Survey Results:
- Socio-demographics: Because the sample population was affiliated with UCSF, it does not entirely mirror San Francisco’s population: they were younger, more educated, and more female. However, many answered that they did have other means of transportation available to them (e.g., bikes, cars, or car sharing memberships).

- Importance of Reliability: Passengers were asked to describe how important several measures of unreliability were for a chosen trip. For both work and non-work trips:
 - Most Important= frequent, consistent service (e.g., can make connection, can walk up to stop without leaving within 10 min)
 - Least Important= comfort (e.g., crowding, ability to find a seat)

- Experiences of Unreliability: Incidents were reported as being seen less than once per month on average to almost never (on a scale of ‘100’ points, where 0 is ‘never’). The full rankings, controlled for frequency of use, can be seen in table 1 above.

- Behavioral Adaptation: Over 95% of respondents reported either having a “strategy” for dealing with unreliability or having reduced their use of the service, and 62% repeat an adaptation. Some of these strategies are described by figures 1 and 2, above.

- Trip Planning: Respondents were very likely to know how long their trip would take (95%) and where they should depart (98%). The use of real-time information was also common: 83% refer to it rather than a schedule and 57% check it before going to a stop.

- Non-User Results: Unreliable service and service cuts were both given as reasons for leaving MUNI by a large proportion of the group (50% and 40%, respectively). They also tended to be different demographically than users, being older, more likely to live outside SF, and more likely to have children, so lifestyle changes may also play a part in their mode shifts.

Logit Model and Results

- Ordinal Logit Model used to find relationship between unreliability experiences and decrease in MUNI use:
 - Dependent Statement: “I make fewer trips on MUNI due to unreliability and use other modes instead.”
 - Explanatory Variables: frequency of negative events, socio-demographics

- Full results are in table 2, the left. Some key findings:
 - Socio-demographics are insignificant, as are auto and bike access.
 - Living close to work and owning a smartphone with data plan (so easier access to real-time info) are significant.
 - The incidents that are most significant can be perceived as the agency’s fault (e.g., delay from backed up transit vehicles)
 - Where a delay occurs seems to matter: on board delays considered worse than these at a stop, and transfer delays more important than delays at access points
 - Wrong real-time information only important when it occurred more than once per week

Recommendations

- For Operations control:
 - May be preferable to cancel trips or hold empty vehicles rather than hold full buses
 - Communication is key, especially when delays are not agency’s fault.

- For Operations planning:
 - Be aware of the importance of wait time at transfers vs. origin stops, planners should attempt to minimize transfer wait times (‘guaranteed connections’ or vehicles to fill gaps)
 - Crowding seems ok, but not being left behind
 - Passengers seem to prefer small, high-frequency vehicles over larger, low-frequency vehicles, even if they may encounter some crowding.

- Use of real-time information: instead of timetable
 - Line between schedule delays and delays due to unreliability is blurring for riders.

Contact Information:
Andre Carrel
UC Civil engineering
Email: andre.carrel@berkeley.edu

Acknowledgements:
Kaiye Liao from UC Berkeley for her contributions in designing and evaluating the survey. Kevin Cox from SFMTA for her support in recruiting survey participants and Jason Lee from the SFMTA for her support in recruiting survey participants.