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[1] Defining rational and effective hydrogeological data acquisition strategies is of crucial
importance as such efforts are always resource limited. Usually, strategies are developed
with the goal of reducing uncertainty, but less often they are developed in the context
of their impacts on uncertainty. This paper presents an approach for determining site
characterization needs on the basis of human health risk. The main challenge is in striking
a balance between reduction in uncertainty in hydrogeological, behavioral, and
physiological parameters. Striking this balance can provide clear guidance on setting
priorities for data acquisition and for better estimating adverse health effects in humans.
This paper addresses this challenge through theoretical developments and numerical
simulation. A wide range of factors that affect site characterization needs are investigated,
including the dimensions of the contaminant plume and additional length scales that
characterize the transport problem, as well as the model of human health risk. The concept
of comparative information yield curves is used for investigating the relative impact of
hydrogeological and physiological parameters in risk. Results show that characterization
needs are dependent on the ratios between flow and transport scales within a risk-driven
approach. Additionally, the results indicate that human health risk becomes less
sensitive to hydrogeological measurements for large plumes. This indicates that under
near-ergodic conditions, uncertainty reduction in human health risk may benefit from
better understanding of the physiological component as opposed to a more detailed
hydrogeological characterization.
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1. Introduction

[2] Obtaining accurate predictions of potential human
health risks from groundwater contamination is a challenge.
The main difficulty relies on the fact that many of the
factors that constitute risk are uncertain. Among these, we
highlight two classes of parameters: (1) hydrogeological
and (2) physiological.
[3] Hydrogeological parameters are necessary to estimate

fate and transport of pollutants in the subsurface as well as
the level of contamination to which humans potentially will
be exposed. Because of aquifer heterogeneity [Dagan,
1984; Rubin and Dagan, 1992; Rubin, 2003], the input
values for hydrogeological parameters betweenmeasurement
locations can influence the flow field and, consequently, the
concentration values calculated by the model. Since we lack
the full knowledge of the subsurface structure, we must
account its uncertainty to fill the spatial gap not covered by
measurements [Beckie, 1996; Rubin, 2003].
[4] Physiological parameters are needed in order to link

contaminant concentration to human health risk. Uncertainty

within this component comes from dose response studies
[McKone and Bogen, 1991; Chiu et al., 2007]. The dose
response relationship is often obtained by performing lab-
oratory experiments on animals at high doses and later
extrapolating the results to humans. In addition, dose
response relationships are extrapolated to the lower doses
relevant to regulatory concerns. Thus, because of these
extrapolations, dose response models are uncertain. Besides
the physiological component, human behavioral character-
istics, such as ingestion rate of tap water, also add uncer-
tainty and variability in the risk related parameters
[Burmaster and Wilson, 1996;Maxwell et al., 1998; Daniels
et al., 2000].
[5] Understanding the impact from each of these factors

in human health risk provides a rational guidance toward
answering questions such as: What is the expected risk
uncertainty reduction if additional measurements of hydrau-
lic conductivity are sampled? Given the uncertainty present
in physiology, when is a detailed site characterization
campaign necessary?
[6] Several studies have investigated risk due to ground-

water contamination in a probabilistic framework. For
example, risk–cost benefit analysis can be found in work
by Massmann and Freeze [1987], Freeze et al. [1990] and
James and Gorelick [1994]. They studied the trade-offs
between financial costs and risk. Uncertainty is accounted
within the hydrogeological parameters using a Bayesian
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framework. In these previous studies, costs are associated
with probability of failure (contamination above some
regulatory threshold value occurring) and the worth of data
was addressed. Implication of aquifer heterogeneity in risk
is addressed by Rubin et al. [1994]. A few other articles
investigated the dependence of risk to hydrogeological and
physiological parameters under different types of contami-
nants (i.e., radionuclide or organic) [Bogen and Spear, 1987;
Andricevic et al., 1994; Andricevic and Cvetkovic, 1996;
Maxwell et al., 1998; Maxwell and Kastenberg, 1999].
Maxwell et al. [1999] addressed how increased sampling of
hydraulic conductivities affects reduction of uncertainty in
human health risk. Benekos et al. [2007] extended the studies
performed by Maxwell and Kastenberg [1999] for multispe-
cies transport.
[7] To investigate the relative impact of uncertainty

reduction in the hydrogeological component and in physi-
ological component on the final risk estimate, de Barros
and Rubin [2008] developed a metric based on the concept
of information entropy that allows one to quantify the
relative impact of information gathered on human health
risk. This metric is used within a graphical tool that compares
alternative strategies for risk uncertainty reduction.
[8] However, the role of flow and transport scales in

determining characterization needs in a risk-driven approach
has not received much attention. There is still need for further
investigation when counterbalancing the effects of hydro-
geological site characterization with physiological uncer-
tainty as a function of flow and transport scales. Hydraulic
properties can vary on different scales and the value of
hydrogeological information is dependent on these physical
scales. Physical scales include the characteristic lengths that
characterize subsurface heterogeneity, flow and transport.
Such scales, as shown in Figure 1, are source size relative to
the correlation length of aquifer heterogeneity, size and
configuration of the exposure endpoint (screened well or
control plane), pore-scale and capture zones induced by the
action of pumping. Furthermore, little attention has been
given to the implication of different risk models in defining
characterization needs and this issue will also be addressed.
[9] In this paper, we employ the concepts presented by de

Barros and Rubin [2008] to investigate the significance of

various length scales that define the risk problem and their
impact on hydrogeological site characterization. We extend
the ideas from de Barros and Rubin [2008] to introduce the
concept of comparative information yield curves in order to
quantify the relative impact of uncertainty reduction of flow
and health parameters in risk. The theoretical aspects of this
concept are presented along with its implications on site
characterization applications. This paper addresses the fol-
lowing fundamental question: Are there physical flow and
transport characteristics in which uncertainty reduction in
human health risk will benefit more from uncertainty
reduction from human physiology or hydrogeology? We
wish to investigate the role of these physical scales in
determining characterization needs.
[10] The above question is relevant since assessing the

value of data acquisition is an issue of concern in real life
applications. Questions concerning the expansion of exist-
ing, and sometimes even substantial, measurement net-
works, or issues regarding selecting between alternative
targets for additional investment are of primary concern.
Such efforts may not always be justified, because they can
potentially yield only marginal improvement in the predic-
tive capability. Because of an ever-increasing demand on
site characterization, many sampling techniques are available
that vary in resolutions and offer direct or indirect informa-
tion on the parameters relevant for modeling [Hubbard and
Rubin, 2000; Kowalsky et al., 2005]. Thus having rational
guide to manage all these alternatives becomes relevant
since we live in a resource constrained world.
[11] The present work is structured as follows: section 2

gives the general mathematical statement of the problem;
section 3 shows how to use the entropy concept in human
health risk; section 4 presents an illustration case; results,
together with discussion, are given in section 5. Finally
conclusions and future considerations are given in section 6.
A notation section containing the majority of the symbols
used throughout this work is also included.

2. Mathematical Statement of the Problem

[12] Given the uncertainty present in all components of
human health risk assessment, it is rational to use a
probabilistic framework to quantify risk due to groundwater
contamination. Our objective is to obtain the ensemble
distributions of human health risk for the exposed popula-
tion. For our work, we will consider r to represent the
increased lifetime cancer risk. This is not a limitation and
noncancer risks can also be used within the framework.
Here, FR(r) denotes the corresponding risk cumulative
distribution function (cdf). FR(r) is evaluated for a given
vector of hydrogeological parameters, qH, field site meas-
urements, {m}, and for a given matrix containing the
population’s health-related parameters QP.
[13] The vector qH contains the parameters that charac-

terize the space random function (SRF) of the hydrogeo-
logical variables [Dagan, 1984, 1987; Rubin and Dagan,
1992; Rubin, 2003] such as mean value and variance of the
log conductivity, integral scales as well as other flow and
transport related parameters such as porosity, source con-
centration, pumping rates and dispersion coefficients. These
parameters have a physical and chemical nature and can be
deterministic or stochastic.

Figure 1. Illustration of the various length scales that
define the flow and transport and consequently risk. Shown
are width of the contaminant source (‘S), capture zone width
(Wcz), and the representative geostatistical correlation
lengths (lx, ly).
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[14] The exposed population with I individuals is char-
acterized by the matrix QP = {qP,1, qP,2, qP,3, . . . qP,i, . . .
qP,I} where qP,i is the vector of behavioral and physiological
characteristics of the ith individual. Each qP,i, where i = 1, 2,
. . ., I, varies from individual to individual. The typical
parameters present in qP,i are, for example, the ingestion
rate per body weight, exposure duration and cancer potency
factors as well as their statistical moments if uncertainty
exists. Statistical distributions for these parameters for
different pathways are found in the literature [see Maxwell
et al., 1998; Binkowitz and Wartenberg, 2001; Portier et al.,
2007]. The conditional risk cdf for the ith individual of the
exposed population is given as follows:

FR rjqH ; qP;i; mf g
� �

¼ Pr R < r½ �: ð1Þ

With equation (1), risk estimates can be obtained given an
appropriate risk model. Most important, for a given regula-
tory acceptable risk value, for example r = 10	6, equation
(1) provides the probability of risk reliability or exceedance.
This may be accomplished by calculating the complementary
cumulative distribution function, Pr[R > r] = 1 	 FR.

3. Use of Entropy to Quantify the Impact of
Information on Risk

[15] In the recent work of de Barros and Rubin [2008],
information entropy was used to develop a metric that
relates the amount of information in hydrogeology to the
amount of information in physiology. This metric, denoted
in the present work by a, was used to investigate uncer-
tainty trade-offs between hydrogeological parameters (such
as hydraulic conductivity K) and physiological parameters
(cancer potency factor). Before explaining the form of a
and how it functions, some definitions are required. We first
introduce the concept of information yield curves. After-
ward, we extend the theoretical aspects toward applications
to site characterization.

3.1. Concept of Information Yield Curves

[16] Following the work of de Barros and Rubin [2008],
let us define EH as the information entropy for hydro-
geological parameters (including transport variables such
as chemical parameters) and EP as the entropy for physio-
logical and behavioral parameters. The entropies are defined
as [Christakos, 1992]

EH ¼ 	
Z

fH qH jIH ; maf gð Þ ln fH qH jIH ; maf gð Þ½ �dqH

EP ¼ 	
Z

fP qPjIP; saf gð Þ ln fP qPjIP; saf gð Þ½ �dqP; ð2Þ

where fH and fP are the continuous probability density
functions (pdf’s) for the vector of hydrogeological para-
meters qH and for the health-related parameters qP,
respectively. The integration in equation (2) is performed
over the entire parameter space. For the sake of notation, we
have omitted the subscript i from qP,i as defined in section 2.
Equation (2) represents the total amount of information
from each component at an initial stage of knowledge.
These entropies can be evaluated with hydrogeological prior
knowledge IH, with a small amount of available hydraulic

data {ma}, physiological prior information IP and finally,
available health-related sample data {sa}. From the
distributions necessary to estimate EH and EP we can
evaluate a corresponding FR(r), defined by equation (1), and
consequently its statistical moments. As more information
becomes available, either from flow or health physics, EH

and EP would decrease since the uncertainty in both fH and
fP is reducible with additional data collection.
[17] Being able to estimate the values of EH and EP with

no a priori information allows one to investigate relative
value of information in human health risk. This is necessary
since decision makers need to decide where to invest
resources toward risk uncertainty reduction. At this early
stage of the risk analysis, only a small amount of informa-
tion is available through prior knowledge or initial data. In
order to decide whether or not more data is needed, one
must evaluate its impact in the human health risk distribu-
tion. We now denote the unknown (to be sampled) hydro-
geological measurements by {mna} and the unknown
health-related by {sna}. The following equations are the
entropies averaged over all possible measurement values:

EH ;O ¼ 	
Z

f̂H qH jIH ; maf g; mnaf gð Þ
�


 ln f̂H qH jIH ; maf g; mnaf gð Þ
h i

dqH

�

EP;O ¼ 	
Z

f̂P qPjIP; saf g; snaf gð Þ
�


 ln f̂P qPjIP; saf g; snaf gð Þ
h i

dqP

�

with EP;O � EP and EH ;O � EH ; ð3Þ

with EH,O and EP,O are the expected entropy values over all
possible measurements values that {mna} and {sna} can
take. They are evaluated with the inferred pdf’s f̂ H and f̂ P
such that EP,O � EP and EH,O � EH, see equation (2). A
general numerical procedure that can be used to obtain the
entropies in equation (3) is as follows.
[18] 1. Generate a possible realization of No measure-

ments for {mna} and So measurements for {sna} from prior
knowledge. This requires the assumption that the models
from which the measurements are generated are known. For
example, a Gaussian or exponential geostatistical model and
a dose response model.
[19] 2. Using the data drawn from this realization, the

parameter’s pdf’s, f̂ H and f̂ P, are inferred. These parameters
can be the mean or variance of the log conductivity data and
integral scales or cancer potency factor. As the number of
measurements increases, these pdf’s become more informa-
tive. Details concerning the pdf estimation procedure is
given in Appendix A.
[20] 3. With f̂ H and f̂ P, the conditional entropies EH,1 and

EP,1 can be calculated. Here, the second subscript corre-
sponds to the first realization of the data sets {mna} and
{sna}. These entropies are conditional on the generated data
and a known model.
[21] 4. Repeat steps 1–3 for several realizations of the

data {mna} and {sna} such that two vectors with elements
EH,j and EP,j are obtained. Here the subscript j = 1, . . ., JMAX

corresponds to the realizations. JMAX is the maximum
number to realizations.
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[22] 5. With the entropies EH,j and EP,j, with j = 1, . . .,
JMAX, the values for the ensembles averages, EH,O and EP,O,
are obtained.
[23] 6. Repeat steps 1–5 to evaluate the impact of an

additional amount of data (N >No) in {mna} and {sna} (S > So).
[24] The assumption in this outlined procedure is that

some information about the site needs to be known. This
includes the prior parameter pdf and the use of expert
opinions or information borrowed from geologically similar
formations (see Appendix A). If model uncertainty exists
(for example: the geostatistical model of the underlying
geological formation or the shape of dose response model),
the current framework can incorporate Bayesian model
averaging [Hoeting et al., 1999; Neuman, 2003]. This is
done by assigning different weights to each entropy ensem-
ble evaluated for a given model and then averaging them.
Mathematically this is equivalent to EH,O =

P
wi �

(EH,OjMi), where wi is the ith weight for the corresponding
ith model denoted by Mi. The term (EH,OjMi) is the
ensemble averaged entropy given a geostatistical model.
In many situations, the conceptual model for flow and
transport could change as more data is collected. For in-
stance, extra hydrogeological data may give evidence to the
presence of a leaking aquitard or strong vertical pressure
gradients, which would cause revisions of the initial concep-
tual model. Even if there is still uncertainty within the
conceptual model, this additional data helps in updating the
weights, wi, in the Bayesian model averaging procedure.
The current framework allows for this model updating
process as more data is collected and obtain new predictions.
[25] For increasing number, N, of measurements in both

{mna} and {sna}, the average entropy estimates decrease as
shown in Figure 2. The vertical axis represents the differ-
ence between the entropy evaluated with increasing N

measurements and the initial entropy calculated with No

measurements (with N  No). This plot was obtained for the
hydrogeological parameters by making use of steps given
above together with Appendix A. A similar plot can be done
with EP,O by averaging over all possible, nonavailable,
physiological and behavioral data. Figure 2 also shows
how different geostatistical models, exponential and Gauss-
ian, can lead to different entropy estimates. It also illustrates
the Bayesian model averaging result if the geostatistical
model is uncertain. Equal weights were assigned to each
model for this demonstration.
[26] Now that we have presented the necessary defini-

tions, we can write the following entropy differences for
both hydrogeological and physiological parameters:

DEH ¼ EH 	 EH ;O

DEP ¼ EP 	 EP;O: ð4Þ

Equation (4) defines the differences between the expected
entropies, EH,O and EP,O, given in equation (3) and the
current entropy stages denoted by EH and EP. By reducing
uncertainty from both physiology and hydrogeology, DEH

and DEP tend to values closer to zero. The metric that
relates uncertainties from each risk component is given
below:

a ¼ 10DEH

10DEP
; ð5Þ

where DEH and DEP are defined in equation (4). As
explained by de Barros and Rubin [2008], loss of
information in qH means a increasing to values greater
than one. This is obtained by increasing DEH while keeping
DEP equal to zero. If uncertainty increases in qP, then a
values are bounded between zero and one (keeping DEH

fixed and equal to zero). When a equals to one, we have
DEP = DEH = 0. The point a = 1 is considered the base
case from which the relative contribution of information
will be quantified. Figure 3 illustrates the a concept.
[27] With equation (5) we can obtain a series of values to

the right and left of a = 1 and evaluate, through simulations,

Figure 2. Entropy averaged over all possible measurement
values generated by a geostatistical model. EH,O(N) and
EH,O(No) are the entropies evaluated with N and No

measurements, respectively, with N  No. If the model of
the underlying formation is unknown, the methodology can
account for the Bayesian model averaging (BMA). Here M1

and M2 correspond to the Gaussian and exponential models,
respectively, with w1 = w2 = 0.5.

Figure 3. Graphical explanation of the a concept. At a =
1, we have reached entropies EP,O and EH,O. For each value
of a, a corresponding risk variance or coefficient of
variation is obtained. The plot of a versus the risk
coefficient of variation is denoted here as the comparative
information yield curves.
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their corresponding uncertainty levels in human health risk.
These corresponding uncertainty levels can be represented
by risk variance, 95th confidence intervals, or the risk
coefficient of variation (CVR = sR/mR). For the current
work, we will adopt the change of the coefficient of
variation in the following way:

DCVR ¼ CVR 	 CVo
R

CVR

; ð6Þ

where CVR
o corresponds to risk evaluated with the entropies

EH,O and EP,O. We will obtain a series of these a versus
DCVR curves for several different physical scenarios to
investigate uncertainty trade-offs. These graphs are denoted
here as the comparative information yield curves. Summar-
izing, the value of a denotes a change in entropy values. It
is a metric for comparing two stages of information. A
financial cost value can be obtained by relating a to a given
sampling strategy. For this particular a value, a correspond-
ing uncertainty reduction will occur. We represented this
uncertainty reduction by DCVR; however, other representa-
tive measures besides DCVR can also be evaluated from the
Monte Carlo simulations (such as 95th confidence intervals).

3.2. Application

[28] Since EH,O and EP,O are speculative projections, in
the sense that it needs to be defined in equation (4) and (5),
one may want additional formulations of the approach
described previously. An alternative application of the
entropy concept for investigating uncertainty trade-offs in

human health risk is obtained by changing the definition of
EH,O and EP,O, given in equation (3) and (4), such that we
have EH � EH,O and EP � EP,O. This means that the values
for EH,O and EP,O correspond to the current state of
information and are denoted as base case entropies. Note
that this new inequality differs from the definition given in
equation (4). This would bypass the need to calculate the
entropy ensemble averages, EH,O and EP,O, as given in
equation (3) and (4). On the basis of a set of initial data
or prior information, an estimate of EH,O and EP,O is
obtained such that DEP = DEH = 0 corresponds to the
initial uncertain case together with a corresponding coeffi-
cient of variation for risk. Now, with this alternative
approach, EH,O and EP,O represents the available amount
of information at the early stage of characterization. As
more data are collected, new estimates of EH and EP are
obtained and their values will be lower than the
corresponding EH,O and EP,O. As shown in the following
paragraph and in Figure 4, a graphical approach could be
used not only to investigate the value of information in
uncertainty reduction in human health risk as more data are
acquired but also to compare different sampling strategies
by estimating their respective value of information using the
six-step procedure described earlier in section 3.1.
[29] Figure 4 shows the application of this alternative

definition (EH � EH,O and EP � EP,O) and how one can
reduce the uncertainty in risk by using different sampling
strategies. Figures 4a and 4b illustrate one sampling strategy:
Reducing uncertainty from hydrogeology (segment I), then
physiology (segment II) followed by hydrogeology again

Figure 4. Illustration of the second alternative for the comparative information yield curves to
investigate risk uncertainty reduction strategies between the hydrogeological and physiological
component. Shown are (a and b) one sampling strategy and (c and d) a different sampling strategy.
CVR is the coefficient of variation of risk, while CV*R is a stopping criterion associated with an
environmental regulation.
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(segment III). A different strategy is shown in Figures 4c and
4d, by reducing uncertainty from hydrogeology (segment I),
then physiology (segment II) and then physiology again
(segment III). The sampling stops when a regulatory target
is reached. Figure 4 gives a stepwise approach allowing one
to direct efforts to obtain the best information yield.
[30] As mentioned before, the advantage of this alterna-

tive is that it avoids the need to prespecify EH,O and EP,O

values as defined in equations (3) and (4) thus allowing one
to construct the plots such as the one given in Figure 4.
Also, the information yield curves based on this alternative
definition offers a stepwise approach illustrated in Figure 4
that allows one to revise the conceptual model as more
information becomes available. At each step, efforts can be
allocated where the sampling strategy offers the best yield.
The usefulness of this second approach will be illustrated in
the end of this paper. Both alternatives for the use of entropy
in risk will be discussed. However, it is important to state
that the second alternative allows one to select where to
invest resources in a more practical manner.

4. Illustration Case

[31] Consider a bounded 2-D flow in an aquifer with
spatially variable and isotropic hydraulic conductivity K(x)
and Y = lnK. Because of incomplete information of the
system, K is characterized by its SRF and is considered here
as statistically stationary. Its covariance structure model is
assumed to be exponential and isotropic with sY

2 being the
variance of Y and l the correlation length of heterogeneity.
A contaminant plume, considered here as a collection of
particles, is released within a rectangular source domain
with transversal length ‘S. Each particle represents a mass of
contaminant and travels along a streamline of the flow field
and are used to determine spatial contaminant distributions
that may cause adverse health effects. We simulate the case
of a hypothetical PCE contamination problem. The
prescribed pressure head along the longitudinal direction

are used as boundary conditions. Zero flux boundary
conditions are assumed along the transversal direction. A
drinking water well with pumping rate Q represents the
environmentally sensitive location. The governing flow and
transport equations are given in Appendix B.
[32] Flow and transport are solved numerically using a

Monte Carlo procedure. At each realization, the flow and
transport problem is solved for a specific image of the
aquifer’s properties, generated using the turning bands
method [Tompson et al., 1989; Rubin, 2003]. Specific
information concerning the numerical codes used in this
work can be found in work by Ashby and Falgout [1996],
Maxwell and Kastenberg [1999], Jones and Woodward
[2001] and Kollet and Maxwell [2006]. Technical details
concerning the numerical implementation are summarized
in Appendix B. The framework presented can be used with
analytical and numerical methods. Our choice for numerical
implementation of flow and transport is for illustration and
not to depend on simplifying assumptions. There exists a
large amount of work published in the literature with
analytical solutions that could be used to build the
comparative information yield curves [Rubin et al., 1994;
Cushey and Rubin, 1997; Sanchez-Vila and Rubin, 2003]
and many are summarized by Rubin [2003]. These same
analytical solutions were also used to investigate human
health risk [see Andricevic et al., 1994; Andricevic and
Cvetkovic, 1996] and served as the basis of the work of de
Barros and Rubin [2008] in which the comparative
information yield curves were used to evaluate uncertainty
trade-offs. In the following we will describe the exposure
pathways considered in this work as well as the input data
used in the simulations.

4.1. Exposure Pathways and Risk Formulation

[33] We consider risk due to groundwater ingestion and
inhalation for illustration of the methodology. These two
pathways were shown to have a stronger impact in human
health risk [Maxwell et al., 1998]. Because of the nature and
complexity of cancer mechanisms, cancer risk models are
generally derived from dose response curves. These curves
are based on toxicological studies and are often determined
experimentally by observing adverse effects in animals for
increasing applied doses (or concentrations) [Fjeld et al.,
2007]. The dose response curve results are then extrapolated
to humans. A common challenge is determining what shape
the dose response relationship in the extrapolated zone
(where uncertainty is highest), also known as the low-dose
zone, should take. For low doses, risk models can assume
both linear and nonlinear forms [Environmental Protection
Agency (EPA), 2005; Fjeld et al., 2007]. Figure 5 shows
linear and nonlinear models for the dose response curves.
[34] In the present formulation we will treat the risk

model in the following functional form:

r ¼ CPFG � LADDG½ �mþCPFH � LADDH½ �m; ð7Þ

where CPFG and CPFH are the cancer potency factors for the
ingestion and inhalation pathway, respectively. These are also
known as the cancer slope factors. The parameter m
determines the nonlinearity of the model. The value for m
comes from fitting the model to toxicological data available
from dose response experiments. LADDG and LADDH are the
average daily doses for tap water ingestion and inhalation

Figure 5. Example of dose response relationship at a
function of m as shown in equation (7). The gray curve with
circles represents the linear model used by the EPA [1989]
with m = 1.
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during shower. The average daily dose is a function of the
concentration (C) and behavioral and exposure parameters:

LADDG ¼ C � IR

BW

	 

� EF � ED

AT
;

LADDH ¼ ACS � ETS �
HR

BW

	 

� EF � ED

AT
: ð8Þ

These behavioral and exposure parameters are the well-
known EPA risk variables such as ingestion rate per body
weight (IR/BW), exposure duration (ED), average lifetime
(AT) and exposure frequency (EF), inhalation rate per body
weight (HR/BW) and shower exposure time (ETS) [EPA,
1989, 2001]. The indoor air concentration is denoted by
ACS = C(WS � TES)/VRS with WS being the tap water use
rate, TES the transfer efficiency from tap water to air and
VRS is the air exchange rate [EPA, 1989, 2001;Maxwell et al.,
1998]. For our work, we will use the peak concentrations to
evaluate risk. Other works studied the effects of averaging
concentration over the exposure duration [Maxwell and
Kastenberg, 1999; Hassan et al., 2001; Maxwell et al.,
2008] and the implications of using average versus peak
concentration in hydrogeological site characterization [de
Barros and Rubin, 2008]. To obtain the classic EPA linear
low-dose model, we set m = 1 [EPA, 1989, 2001].

4.2. Input Data Used in the Case Study

[35] Table 1 summarizes the deterministic data used for
input in the simulations. The domain with longitudinal
dimension L and width W (size: 50l � 32l) is discretized
into a regular rectangular grid. Each grid block has
dimensions Dx1 = Dx2 = l/5 [Rubin et al., 1999; Lawrence
and Rubin, 2007]. As mentioned previously, flow and
transport are solved within the Monte Carlo approach and
300 realizations were performed.
[36] To answer the research questions posed in the

introduction, we select an aquifer with parameters summa-
rized in Table 2. This aquifer, denoted as the baseline, was
selected from several realizations simulated with geometric

mean KG = 1 m d	1 and sY
2 = 1 (see Table 2). From this

baseline aquifer, we sampled values of hydraulic conduc-
tivity in fixed intervals of 8l, 4l and 2l in a subdomain
(18l � 16l) horizontally centered with the contaminant
source and the environmentally sensitive target. We denote
by {m1} the measurement density associated with the
sampling interval 8l, {m2} with 4l and finally {m3} with 2l.
[37] For the present investigations, we assume that sY

2 and
KG are uncertain parameters and its statistical distributions
can be inferred as shown in Appendix A. Both sY

2 and KG

vary between conditional simulation according to the three
mentioned sampling densities shown in Table 2. Hence, fH in
equation (2) corresponds to the pdf for sY

2 and KG. If a
distribution is assumed, say, lognormal, the statistical
moments of sY

2 and KG can be estimated by using the
maximum likelihood function [Rubin, 2003] (see Appendix
C). Table 2 summarizes the estimated parameters from the
sampled data set used in flow simulation.
[38] From the physiological side, we assume that cancer

potency factors are the uncertain parameter and uniformly
distributed [McKone and Bogen, 1991]. Thus, fP in equation
(2), represents the uniform pdf for CPFG and CPFH. Table 3
summarizes the upper and lower bounds used in the
following simulations. The coefficient of variation (CV) is
also included in Table 3. We evaluate risk for different
levels of parametric uncertainty in CPFG and CPFH.
Because of the lack of data, we assume, without loss of
generality, that the hydrogeological and physiological
parameters are independent. This assumption is not a
limitation in our work. If correlations between both
components are known (for example, concentration data
and the cancer potency factors), then joint entropies can be
evaluated with the corresponding joint pdf between hydro-
geological and physiological parameters [see Christakos,
1992]. For the current work, EH,O is evaluated with estimated
uncertain parameters from denser measurement grid {m3}

Table 1. Data Used in Flow, Transport, and Health Risk Modelsa

Value

Hydrogeological Parameters
Q 5 and 50 m3 d	1

Pe = l/aL 100 and 1
l 100 m
n 0.3
Rf 1
L 3000 m
W 2500 m
xw (2500 m, 1000 m)

Behavioral Parameters
IR/BW 0.033 L (d kg)	1

AT 70 years
HR/BW 0.39 m3 (d kg)	1

WS 480 h	1

EF 350 d a	1

ED 30 years
TES 0.5
VRS 12 mg m	3

ETS 0.13 h d	1

aBehavioral parameters are representative of the 50th fractile of
variability. See the notation section.

Table 2. Hydrogeological Data Used in the Conditional

Simulationsa

Sampling Strategy KG (m d	1) sY
2 N* Var[sY

2] Var[KG]

‘‘Base’’ aquifer 1 1 NA NA NA
{m1}: 8l 1.5 1.2 9 0.295 1.06
{m2}: 4l 0.9 0.60 25 0.035 0.16
{m3}: 2l 0.76 0.71 81 0.012 0.02

aHere N* denotes the number of measurements sampled. NA means not
applicable.

Table 3. Uniform Distribution Parameters for CPFG and CPFH
a

Case

CPFG CPFH

Minimum Maximum CV Minimum Maximum CV

1 0.001 0.025 0.53 0.0012 0.002 0.14
2 0.005 0.025 0.38 0.0015 0.002 0.08
3 0.01 0.025 0.24 0.0017 0.002 0.05
4 0.015 0.025 0.14 0.0017 0.0019 0.03

aUnits of [(kg-d) (mg)	1]m; see equation (7).
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given in Table 2 and EP,O is evaluated with the statistical
distributions in case 4 from Table 3.

5. Results and Discussion

[39] In this section, results are presented on the basis of
the data set given previously. We first address the interplay
between the plume scale, capture zones, and pore-scale
dispersion. The differences between using a screened well
versus a control plane to evaluate the concentration in
defining characterization needs within a risk driven ap-
proach is also addressed. Finally, we illustrate the how the
value of information depends on the risk model used (i.e.,
linear versus nonlinear model). Our discussion and analysis
are based on the concept of comparative information yield
curves described in section 3.

5.1. On Plume Scale, Capture Zones, and Pore Scale

[40] Here, we investigate the dependence of risk uncer-
tainty reduction on plume size by making use of the entropy
concept defined in section 3. Our goal is to evaluate the risk
cdf conditioned on the contaminant source size and meas-
urements, FR(rjz, {mi}) where z is the ratio between the
source width (‘S) and the heterogeneity correlation length
(l) (see Figure 1). Results are shown for a small (z = 0.5)
and large (z = 6) contaminant source given measurements
densities {m1}, {m2} and {m3}.
[41] The comparative information yield curves in Figure 6

shows that the effect of conditioning in reduction of risk
uncertainty is much more beneficial for small source when
conditioning on hydrogeological data. However, gaining
information on the physiology side has much more effect in
risk uncertainty reduction when the source is large (z = 6).
[42] For a given change in a at points a > 1, we observe

that the corresponding change in DCVR is greater for the
smaller plume case (z = 0.5) than for the larger plume (z = 6).
This means that hydrogeological data acquisition has a
stronger impact on risk uncertainty for smaller plumes by
comparing h3 and h4 shown in Figure 6 (h3 > h4). One can

also fix a change in DCVR and compare the slopes of the
curves and the corresponding changes in loga to the left and
right of a = 1. A similar effect was observed by Maxwell et
al. [1999] by comparing conditional risk cdf’s for a 3-D
flow and transport test case. We will explore in more detail
the physical mechanisms behind this result.
[43] This effect can be explained as follows: As the scale

of the solute body increases, the plume approaches the
ergodic state. This means that the plume’s centroid becomes
less affected by small-scale fluctuations captured by hy-
draulic conductivity measurements [Rubin et al., 1999;
Rubin, 2003]. On the contrary, for small contaminant
sources (z < 1), additional data contributes to reducing
uncertainty about the location of the contaminant plume as
well as the small-scale fluctuations of the streamlines. For
example, a set of additional measurements may inform
whether or not the contaminant plume will bypass the
drinking water well.
[44] The opposite effect is noted for a < 1. Here we

observe that for a given change in a, the larger DCVR

corresponds to the larger plume (h1 > h2). For larger plumes,
uncertainty reduction from the physiological side causes a
larger uncertainty reduction in the human health risk cdf
when compared to the smaller plume case. This is quite
intuitive since there is no or little uncertainty whether a
larger plume will reach the environmental target. The only
uncertainty is how severe the impact would be on the
exposed population. This depends more on the population’s
physiological characteristics than on flow and transport
processes.
[45] Now, we wish to extend this result to illustrate its

dependence on the scale of the capture zone induced by
aquifer pumping (see Figure 7). Juxtaposition of Figures 6
and 7 shows that by increasing the pumping rate Q, the
benefit of additional K sampling vanishes, regardless of
source dimensions. The probability that the plume will
reach the drinking well increases for larger Q, thus the
additional data used to increase the accuracy of the plume’s

Figure 6. Illustration of the comparative information yield
curves concept and the relative contribution of information
for Q = 5 m3 d	1 and Pe ! 1 given source sizes z = 0.5
and z = 6. Here h1 > h2 and h3 > h4 for a fixed change in
loga. Risk is evaluated with a linear model provided in
equation (7) with m = 1.

Figure 7. Illustration of the comparative information yield
curves concept and the relative contribution of information
for Q = 50 m3 d	1 and Pe ! 1 given source sizes z = 0.5
and z = 6. Risk is evaluated with a linear model provided in
equation (7) with m = 1.
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location has a smaller impact and becomes less relevant. On
the other hand, improved physiological characterization is
more beneficial for the bigger plume than the smaller one
(similar to the conclusions drawn from Figure 6) because in
the absence of uncertainty on whether the plume will be
captured by the well, the only impact on risk uncertainty
reduction is from the physiological side.
[46] The effect of pore-scale dispersion on characteriza-

tion needs is demonstrated in Figure 8. The Péclet number is
defined as Pe = l/aL with aL being the longitudinal
dispersivity. The Péclet number is varied in this case
through different aL values. Figure 8 shows that at small
Péclet numbers, the benefits of K sampling diminish
independently of the plume’s dimension. Two cases for
comparison are shown: An infinite Péclet scenario and a
finite Péclet scenario (Pe = 100). Larger pore-scale
dispersion smooths out details captured by hydrogeological
site characterization for both large and small plumes. The
role of a finite Péclet number in heterogeneous flows is to
increase the rate of concentration variance destruction thus
smoothing out the concentration field [Fiorotto and Caroni,
2002; Rubin, 2003; Caroni and Fiorotto, 2005]. This is
observed in Figure 8 for a > 1. By removing pore-scale
dispersion, the effect of plume size starts to play a role in
defining characterization efforts as shown in Figure 8 for
points a > 1. For large Pe, the plume centroid is influenced
more by heterogeneity and hydraulic data contributes to risk
uncertainty reduction. Furthermore, if the plume is small and
transport is dominated by advective processes, pore-scale
effects as well as macrodispersion plays less of a role, thus
increasing the importance of hydrogeological data acquisi-
tion. The information yield curve for this case (z = 0.5 and
Pe ! 1) is represented in Figure 8 for points a > 1.
[47] For a < 1, we have the same results as shown in

Figures 6 and 7. Note that, for finite Péclet, the curves
corresponding to z = 0.5 and z = 6 are grouped closer
compared to Figures 6 and 7. This is because dispersion

tends to dilute the concentration field. On the contrary, by
observing the slopes of the curves depicted in Figure 7,
larger Péclet numbers imply larger variance in the
concentration leading to higher probability for having larger
concentration values. In the case of high Péclet, plume scale
makes a large difference in determining whether or not
physiological uncertainty is important. For instance, Figure 8
shows that the physiological side becomes more important to
characterize for the z = 0.5 and Pe ! 1 information yield
curve. Summarizing, elements that reduce hydrogeological
uncertainty about the environmental target being hit (larger
plume, larger dispersivity, etc.) increase the value of
physiological characterization.

5.2. On the Significance of Concentration Averaging

[48] Evaluation of human health risk may yield different
results depending how the concentration is calculated. Some
analysis makes use of the concentration at one or more fixed
points in space represented by a drinking well [Maxwell et
al., 1998; Maxwell and Kastenberg, 1999; Maxwell et al.,
1999; Benekos et al., 2007], whereas other studies have
used the total solute mass flux (Qs) over a control plane
[Andricevic et al., 1994; Andricevic and Cvetkovic, 1996,
1998]. Dividing the total solute discharge (Qs) by the fluid
volumetric discharge over the control plane (Qf) yields the
flux-averaged concentration Cf = Qs/Qf [Kreft and Zuber,
1978] (see discussion by Rubin [2003, p.163]).
[49] The differences in the definition of the concentration

are elucidated in the information yield curves present in
Figure 9. We obtained Figure 9 by making use of the flux-
averaged concentration over the entire control plane (see
Figure 1). When comparing with Figures 6 and 7, Figure 9
shows how the control plane approach dampens the effect of
the differences in plume size and pumping. Note that for
each pumping scenario, the curves for large and small
plumes are closer together when compared to Figures 6

Figure 8. The influence of pore-scale dispersion in the
analysis with Pe = l/aL. Results were obtained for Pe = 100
and Pe ! 1 given a fixed pumping rate Q = 5 m3 d	1. The
longitudinal dispersivity is aL = 1 m2, and the transversal
dispersivity is aT = 0.1 m2. Risk is evaluated with a linear
model provided in equation (7) with m = 1.

Figure 9. Measuring the relative contribution of informa-
tion for pumping rates Q = 5 and Q = 50 m3 d	1 and source
sizes z = 0.5 and z = 6. Results were evaluated using the
flux-averaged concentration over the compliance plane.
Risk is evaluated with a linear model provided in equation
(7) with m = 1.
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and 7. This is more evident to the curves to the left of a = 1
where the relative gain of information in the physiological
component of risk is quantified. What this result illustrates
is that parametric uncertainty reduction from the physiolo-
gical component is less dependent on both the plume’s
dimension and the scale of the capture zone when human
health risk is evaluated with the solute discharge over a
control plane. One possible explanation is that when
evaluating Cf over the control plane, the total mass of the
solute present in that particular slice of the domain is being
captured independently of its spatial distribution. Even if the
peak of Qs (say, above a certain regulatory threshold value)
occurs along a streamline that bypasses the well, the
presence of the chemical (and it peak value) will still be
lumped into Cf since the averaging process is over the entire
control plane. This averaging procedure over the control
plane also leads to smaller differences observed in the
curves to the left of a = 1 when compared to Figures 6–8
since the breakthrough curves for Cf are smoother. From a
regulator’s point of view, an erroneous interpretation of the
concentration term in risk may lead to unnecessary cleanup
costs. For example, the control plane approach may account
for the contaminant mass along a streamline that bypasses
the drinking water well leading to remediation costs. Still,
from the information yield curves present in Figure 9, it is
possible to observe that human health risk uncertainty
reduction benefits more from physiological characterization.
[50] As for the effects of additional measurements of K,

the extra dilution added by averaging Qs by Qf smoothes out
local details captured by characterization. In other words,
the control plane approach adds an enhanced diffusive
mechanism that removes some of the conditional effect
gathered through site characterization and may mislead
decision makers. However, the control plane approach can
be very helpful if regulations are based on travel times as
shown by Andricevic et al. [1994] and Andricevic and
Cvetkovic [1996].

5.3. Effect of Alternative Risk Models

[51] In the present subsection we illustrate the sensitivity
of human health risk toward different dose response models

(see equation (7) and Figure 5). As explained previously, the
main uncertainty in risk models is at the low dose (or low
concentrations) [EPA, 2005; Chiu et al., 2007; Fjeld et al.,
2007]. For instance, PCE is known to cause cell leukemia
and kidney tumors in rodents; however, the shape of its dose
response in humans is uncertain [EPA, 1998]. Here, we wish
to point out how different dose response models can lead to
different characterization needs.
[52] For illustration purposes, in the next results we will

use a linear model (m = 1 in equation (4)) and a nonlinear
model (m = 2.5 in equation (7)). The linear model assumes
zero risk only at zero concentration and is normally
considered conservative [EPA, 1989, 2001, 2005]. However,
in recent years, the scientific community as well as
environmental regulations acknowledges that the use of a
nonlinear model maybe more adequate depending on the
amount of available data used to construct the dose response
model [EPA, 2005; Chiu et al., 2007; Fjeld et al., 2007].
The applicability of these nonlinear models may be
expanded to both cancer and noncancer risks [EPA, 2005].
Now we illustrate how different risk models would possibly
manifest in information yield curves.
[53] In Figure 10, we compare different risk models, their

sensitivity to hydrogeological data acquisition and conse-
quently parametric uncertainty reduction. Figure 10 shows
how hydrogeological sampling has a stronger implication in
risk uncertainty reduction for the nonlinear model than for
the linear model. This result indicates that when using a
nonlinear model to evaluate risk, the data worth of sampling
hydraulic conductivity increases toward risk uncertainty
reduction. Thus characterizing the behavior of the flow
field becomes more important for this class of models.
Although this result is shown only for carcinogenic risk, it
may also have implications for some noncarcinogenic
compounds with threshold doses where an adverse effect
is observed. In such cases, the worth of hydrogeological
information might increase given that better understanding
of the flow patterns lead to better estimation of the concen-
tration (or dose) values since the knowledge of being above
or below such threshold values becomes very important.

5.4. On the Definition of EH,O and EP,O

[54] As presented previously in section 3, an alternative
way to investigate uncertainty trade-offs is to change the
definition of EH,O and EP,O such that we have EH � EH,O

and EP � EP,O. This implies that EH,O and EP,O corresponds
to the most uncertain case (see Figure 4). These entropies
are now evaluated with the most uncertain distributions,
corresponding to the small amount of information available
a priori. In this new definition, EH,O and EP,O are now the
starting points of uncertainty reduction. This avoids the
need to prespecify EH,O and EP,O values as defined in
section 3 thus allowing more flexibility.
[55] Figure 11 depicts how decision makers could inves-

tigate risk uncertainty reduction strategies by plotting both
the coefficient of variation of risk (CVR) versus DEH and
DEP (equivalent to loga). We have used the data given in
Tables 1–3 to obtain plots similar to the diagram in Figure
4. As a starting point, risk is evaluated with EH,O and EP,O

(initial information available, most uncertain case) as well
as its corresponding CVR = CVR

O. By collecting additional
data, one may perform conditional simulations from both
the hydrogeological and physiological side (see Figures 11a

Figure 10. Sensitivity of human risk toward different dose
response models. Results were evaluated with z = 0.5 and
Q = 5 m3 d	1.
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and 11b) and evaluate a new CVR. For instance, from the
starting point CVR

O, uncertainty reduction in risk can be done
in a five-step procedure by collecting K data (Figure 11a,
segment I), then through physiology or behavioral para-
meters (Figure 11b, segments II and III), then more K
measurements (Figure 11a segments IV) and finally health
variables again (Figure 11b, segment V). The stopping
criterion is when CVR meets the regulatory standards. Thus
the necessity of additional sampling is risk driven and can
be decided upon on the basis of an acceptable risk value
(say, the 95th percentile confidence level or a coefficient of
variation) that is in agreement with probabilistic risk
assessment guidelines [EPA, 2001].
[56] However, this graphical approach can be useful to

compare different characterization strategies by making use
of the estimation procedure given in section 3 to evaluate
entropies for a priori unknown data. Figures 11a and 11b
showed a five-step procedure described in the previous
paragraph. By summing up all the DEH and DEP needed
to reduce CVR from 2.1 to 1.65, one may come with an
estimate of the sampling efforts. Yet, a different strategy,
three-step procedure, is given in Figures 11c and 11d which
can yield a different summed entropy value when compared
to the one given by the five-step procedure (see Figures 11c
and 11d, segments I, II and III). By associating the risk
uncertainty reduction with the corresponding total change in
entropy (DEH and DEP) one may opt for the cheapest
strategy to reach a compliance goal set up by environmental
agencies. For example, the costs in hydrogeology could be
associated with slug tests and sampling (laboratory experi-

ments) while in physiology and health-related parameters
acquisition costs can be associated with number of animals
used in toxicological studies or a more detailed survey of
the behavioral characteristics of the exposed population.
[57] Next, we show how sampling efforts can differ when

using the same data acquisition strategy but different risk
models. Figures 12a and 12b were evaluated using a linear
risk model while Figures 12c and 12d uses a nonlinear model.
One can see that the slopes of the curves in Figures 12a and
12b are different than Figures 12c and 12d for each
corresponding segment. Also, Figures 12a and 12c depicts
how the total change in DEH, represented by summing dh1
and dh2 corresponds to two distinct changes in CVR

represented by DH. The total change in DEP (dp1 + dp2 +
dp3) and the associated total change in CVR, denoted by DP,
is highlighted in Figures 12b and 12d.
[58] In summary, the usefulness of the stepwise approach

given in Figures 11 and 12 is that it allows one to see how
different uncertainty reduction strategies could lead to
different costs (associated with data) by avoiding the
necessity of evaluating speculative values for both EH,O

and EP,O required for equations (3) and (4) in section 4.

6. Summary and Conclusions

[59] In this work, we discussed the theoretical and prac-
tical aspects of the information yield curves within a risk-
driven context. The relevance of transport and flow scales in
defining characterization needs in human health risk is
addressed. Through numerical experimentation, conditions
are identified where hydrogeological site characterization,

Figure 11. Illustration of the yield information curves within the stepwise approach given in section 3
comparing two sampling strategies using a linear risk model (m = 1). (a and b) Strategy using five
uncertainty reduction segments. (c and d) Strategy using three uncertainty reduction segments.

W06401 DE BARROS ET AL.: COMPARATIVE INFORMATION YIELD CURVES

11 of 16

W06401



through measurements of hydraulic conductivity, has a
stronger impact in uncertainty reduction in risk as well as
conditions in which physiological uncertainty reduction has
a significant impact. In order to achieve this, we investigat-
ed the interplay between plume dimension, capture zones
induced by pumping action, Péclet number and sampling
scales for different conditional simulations. We have quan-
tified the relative gain of information through uncertainty
reduction from both physiology and flow physics for a
fixed, although not limited to, fractile of human variability.
Results were analyzed for the low-dose risk curves. On the
basis of our simulations, physical configuration (2-D
groundwater flow and transport) and risk pathways, we
highlight the following points.
[60] 1. The role of the plume’s dimension proved impor-

tant in defining characterization needs in the risk-driven
context. Results show that uncertainty reduction in human
health risk benefits more from hydrogeological site charac-
terization if the contaminant source is small relative to the
heterogeneity correlation length. The human health risk cdf
is less sensitive to measurements of hydraulic conductivity
if the contaminant source is large.

[61] 2. The value of information not only depends on
plume’s dimension but also on its interplay with the pump-
ing rate related to the scale of capture zone. For high
pumping rates, thus larger capture zones, the value of
information from the hydrogeological component becomes
less dependent on the plume’s dimension. The opposite
occurs as the pumping rate decreases and the plume’s
dimension begins to gain a role in defining hydrogeological
sampling needs.
[62] 3. Results indicate that uncertainty reduction in risk

may benefit more from parametric uncertainty reduction
from the physiological component as opposed to hydro-
geological if the plume’s dimension approaches ergodicity.
[63] 4. The significance of plume dimension in defining

hydrogeological characterization needs is also dependent on
the phenomenon occurring at pore scale. For high Péclet
conditions, plume size relative to the heterogeneity scale
has a role in defining characterization efforts. When pore-
scale dispersion effects are increased (lower Péclet), the
knowledge of whether the plume is large or small becomes
less relevant in defining hydrogeological characterization
strategies.

Figure 12. Illustration of the yield information curves within the stepwise approach given in section 3
comparing the same sampling strategy given two risk models (m = 1 and m = 2.5). (a and b) Strategy
using m = 1 (linear risk model). (c and d) The same strategy but using m = 2.5 (nonlinear model).
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[64] 5. Similar conclusion was obtained when comparing
concentration measured in a well versus the flux-averaged
concentration at a control plane. The differences between
concentration pumped by a well and concentration at a
control plane is highlighted and can also lead to significant
different characterization needs from both physiological and
hydrogeological perspective.
[65] 6. We also showed how different risk models have

different effects in risk uncertainty reduction and defining
characterization needs.
[66] For this work, we have made extensive use of

information entropy to investigate uncertainty trade-offs in
a graphical manner. We denote these entropy plots as
information yield curves. This is a useful concept since it
allows one to easily view the relative contribution of
information in risk from the physiological and the hydro-
geological component. An important difference regarding
the use of these entropy plots as opposed to cdf is that one
can assign changes in entropy for both physiology and
hydrogeology for a fixed uncertainty reduction in human
health risk. The challenge in this approach is to assign
estimated financial values to these a values. This way,
decision makers can verify which uncertainty reduction
campaign is cheaper for a given uncertainty reduction in
risk estimates. Translating a values into financial terms
allows one to cast the analysis in a cost-benefit framework
as studied by Massmann and Freeze [1987] and Freeze et
al. [1990]. Section 3 provided a discussion of Information
Yield Curves and how to make this concept practical in real
site characterization problems. For our simulations, the
mean value of risk did not vary significantly from each
conditioning case and all were found to be within the same
order of magnitude. However, if the mean value of risk
varies significantly, other measures of uncertainty besides
DCVR might be more informative (for instance: relative
entropy or 95th confidential interval). In this study, the
uncertainty in the hydrogeological component was within
SRF parameters. In this study we did not account for
uncertainty in the chemical reactions, although this is not a
limitation in the framework or the numerical implementation.
These parameters can be accounted in qH. Another option
would be to generalize the metric a to other dimensions to
account for specific subgroups of parameters. For example: a
subgroup for chemical parameters, another for the SRF
parameters and finally for source characteristics.
[67] It is important to note that the framework and results

presented here can be extended to different types of data
used for conditioning. In addition, other sources of uncer-
tainty can be incorporated into the framework. We have
used a two-dimensional model to answer the research
questions addressed in the introduction. Reproducing these
numerical simulations and problem configuration in a three-
dimensional physical model may enhance the results
obtained. For an instance, Maxwell et al. [1999] reported
that finer sampling over the vertical direction is necessary
and relevant to predict the expected plume path. Our
approach can be extended to account for variability within
the exposed population. Here we calculated the comparative
information yield curves for a single fractile in population
variability (see section 2 for discussions on QP and qP,i);
however, one may obtain information yield curves for
different fractiles. Given this, 3-D surfaces of information

yield could be evaluated. As for the pore-scale dispersion
analysis, the slopes of the information yield curves are
affected by both longitudinal and transversal Péclet
numbers. For instance, increasing the transversal dispersion
coefficient, more mass will be transferred between stream-
lines, thus smoothing the concentration field. This effect is
reflected in the information yield curves. Nevertheless, one
of the novelties of the present work is the illustration of the
importance of considering flow and transport scales when
defining characterization needs toward better resource
allocation within a risk-driven approach. Most importantly,
the current paper introduced the theoretical and practical
aspects of the information yield curves in human health risk
assessment. This approach allows one to investigate
uncertainty trade-offs from the health-related parameters
and physical parameters.

Appendix A

[68] Given a set Y of Yi = ln Ki measurements from a
random field generator we are able to estimate a pdf for the
uncertain parameter. From this sample, we obtain the SRF
parameters, for example, qH = {mY, sY

2, l} where mY and sY
2

are the mean and variance of Y and l is its correlation
length. We need to infer the distribution of qH given the
measurements in Y, f̂ H(qHjY). The procedure is based on
Bayes’ theorem:

f̂H qH jYð Þ ¼ fprior qHð ÞfY Y jqHð Þ
fY Yð Þ ; ðA1Þ

where the assumption of a prior pdf, fprior(qH), is needed.
Assuming that the pdf fY(Yjq) is multivariate Gaussian, we
have

fY Y jqHð Þ ¼ 1

2pð ÞN=2
CYYk k

Exp 	 1

2
Y 	mY½ �C	1

YY Y 	mY½ �
� �

;

ðA2Þ

with CYY is the geostatistical correlation model that depends
on qH = {mY, sY

2, l} and kCYYk � Det(CYY). With equation
(A2), the estimated pdf in equation (A1) can be obtained.

Appendix B

[69] A two-dimensional depth-averaged, saturated, steady
state flow is considered. The flow domain is considered
bounded and defined by the aquifer’s longitudinal length
L and width W. The equation that governs flow is given as
follows:

r 
 bK xð Þr8½ � ¼
X
w

Qwd x	 xwð Þ; ðB1Þ

where b is the average depth of the aquifer, 8 the pressure
head, Qw is the pumping rate of the wth pump well at
location xw. We consider no-flow boundary conditions on
the transversal direction (x2) and prescribed pressure head in
the longitudinal direction (x1). Flow occurs from the left to
right. Assuming instantaneous linear chemical interactions
with the soil particles and that the chemical, with initial
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concentration Co, is instantaneously released within the
aquifer along a line source, we write

Rf

@C

@t
þ vrC 	r 
 D xð ÞrC½ � ¼

X
w

CwQw

n
d x	 xwð Þ; ðB2Þ

with n being the effective porosity and v is the Eulerian
velocity vector obtained through Darcy’s law and
equation (2), Rf is the retardation factor, D is the dispersion
coefficient tensor, C is the concentration and finally Cw is
the concentration at the pumping well.
[70] ParFlow was used to solve the flow field in the

aquifer [Ashby and Falgout, 1996; Jones and Woodward,
2001; Kollet and Maxwell, 2006]. ParFlow is a watershed
flow code that uses a multigrid preconditioned conjugate
gradient algorithm to efficiently solve the linear system
resulting from the discretization of the flow equation.
[71] The contaminant transport is solved using a La-

grangian particle tracking algorithm with very minimal
numerical dispersion and conservation of mass [Maxwell
and Kastenberg, 1999; Maxwell and Tompson, 2006;
Maxwell et al., 2007]. This code, SLIM-FAST, simulates
migration of dissolved, neutrally buoyant and reactive
chemical in saturated porous media. To represent concen-
tration and the spatial/temporal distribution of the con-
taminant, an explicit Lagrangian random walk particle
method is implemented in the code. SLIM-FAST also
benefits from the quasianalytical formulation presented by
Schafer-Perini and Wilson [1991].

Appendix C

[72] In the case where N* measurements of Y = lnK are
available, the negative log likelihood function for a
multivariate normal pdf becomes [Rubin, 2003]

	 ln L qH jYið Þ ¼ N �

2
ln 2pð Þ þ 1

2
ln CYYk k

þ 1

2

XN �

i¼1

XN�

j¼1

Yi 	 Yih ið Þ Yj 	 Yj
� �� �

CY xi; xj
� � ; ðC1Þ

where kCYYk is the determinant of the variance-covariance
matrix of order N* by N*. CY(xi, xj) is the spatial covariance
model. For our results, we used the case of an exponential
isotropic CY(xi, xj) such that qH = (mY, sY

2, l). The
maximum likelihood estimators are those that minimize
equation (C1).

Notation

b depth of the aquifer [L].
AT average lifetime.

ACS indoor air concentration.
C, Cw resident concentration and concen-

tration at the well [M L	3].
CY covariance model.

CPFH, CPFG cancer potency factor [(kg d)
(mg)	1]m, where m is the value
that determines the nonlinearity in
the risk model (see equation (7)).

CVR
o coefficient of variation for risk

evaluated with base entropies [	].
CVR coefficient of variation for risk

[	].
LADDG, LADDH intake dose [mg (kg d)	1].

D mechanical dispersion tensor [L2

T	1].
EH, EP, EP,O and EH,O entropies and base entropies [	].

ED exposure duration.
EF exposure frequency.
ETS shower exposure time.

fH, fP probability density functions for
the hydrogeological and health
parameters.

f̂ estimate of a pdf.
h1, h2, h3, h4 markings on Figure 6.

HR/BW inhalation rate per body weight.
K hydraulic conductivity [L T	1].

IR/BW ingestion rate per body weight.
‘S dimension of the contaminant

cloud in the x2 direction [L].
{mi} sampling grid.

Q pumping well [L3 T	1].
Qf volumetric fluid discharge [L3 T	1].
Qs total solute discharge [M T	1].
n porosity [	].

N* number of measurements [	].
r increased lifetime cancer risk [	].
Rf retardation factor [	].

TES transfer efficiency from tap water
to air.

VRS air exchange rate.
v Eulerian velocity field [L T	1].

Var[sY
2] variance of sY

2.
x Euclidean space vector [L].
xw location of the wth pumping well

[L].
Y logarithm of K [	].

WS tap water use rate.
DEH, DEP, DCVR entropy differences; change in the

risk coefficient of variation [	].
dhi, dpi markings in Figure 11.

a; aL, aT metric used to relate entropies;
dispersivities in the x1 and x2
direction [L2].

x lag distance.
8 pressure head [L].
l correlation length [L].
mR mean value of risk.
sR standard deviation for risk.
sY
2 variance of Y [	].

qH, qP vector for hydrogeological and
physiological parameters.

z ratio between the size of the con-
taminant source and the character-
istic length of the subsurface [	].
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