The Concept of Block-Effective Macrodispersion for Numerical Modeling of Contaminant Transport

Yoram Rubin

University of California at Berkeley

Thanks to Alberto Bellin and Alison Lawrence



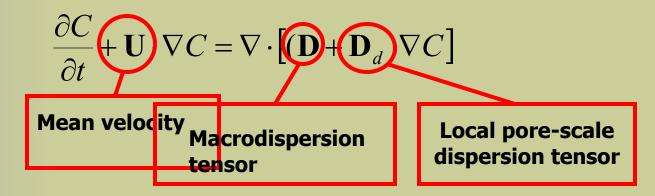
Background

- Upscaling of permeability has been a major area of research;
- Important results available for effective conductivity for various models of spatial variability, various flow regimes and space dimensionalities;
- Theories are also available for upscaling to the numerical grid-block scale (length scale of the homogenized domain is comparable to the scale of heterogeneity);
- Much less work has been done on the transport side, specifically:
- how to assign dispersion coefficients to numerical grid blocks?

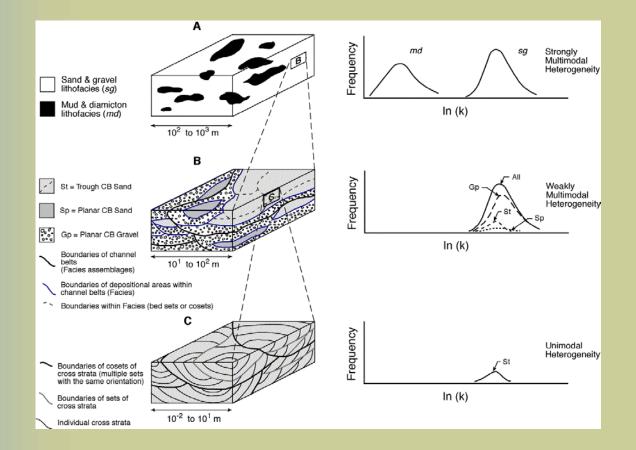
Goal of this presentation:

- Propose an approach toward a rational design of numerical analysis of transport which accounts for the various length scales affecting transport including: scales of heterogeneity, pore-scale dispersivity, dimensions of the solute plume, numerical grid block dimensions and travel distances, as well as space dimensionality;
- On a more fundamental level: bridge between stochastic concepts and numerical applications;

A common stochastic approach for modeling transport: The Concept of Macrodispersivity



Transport in complex geological structure can be analyzed: multi-scale, hierarchical heterogeneity

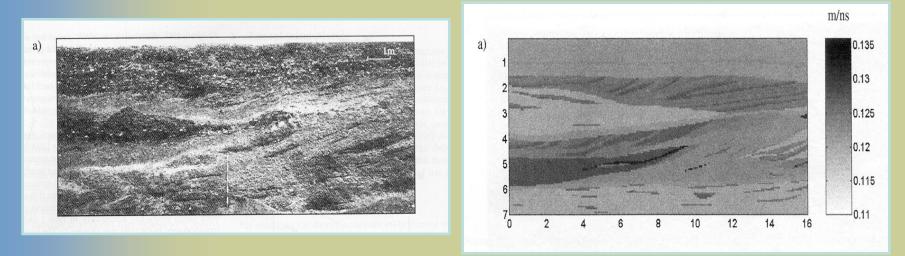


Hierarchical organization of lithofacies and corresponding permeability Modes (Ritzi et al., Water Resources Research, 40(3), 2004)

Important considerations:

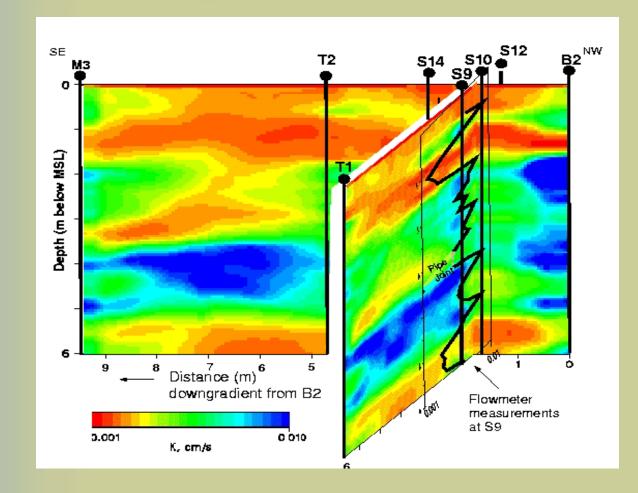
- Concept is limited to modeling plumes that are large with respect to the scales of heterogeneity (ergodic*), because:
- When plume is ergodic, all variability is local, and its effects can be modeled deterministically through dispersion coefficients;
- This concept is not useful in numerical applications, where we usually deal with non-ergodic plumes, and in that case:
- It is important to capture the large scale spatial variability directly on the grid;
- *(Dagan, G., JFM, 1991)

Large scale variability of the hydraulic properties can be identified using GPR



Kowalsky, M., et al, Water Resources Research, 37(6), 2001

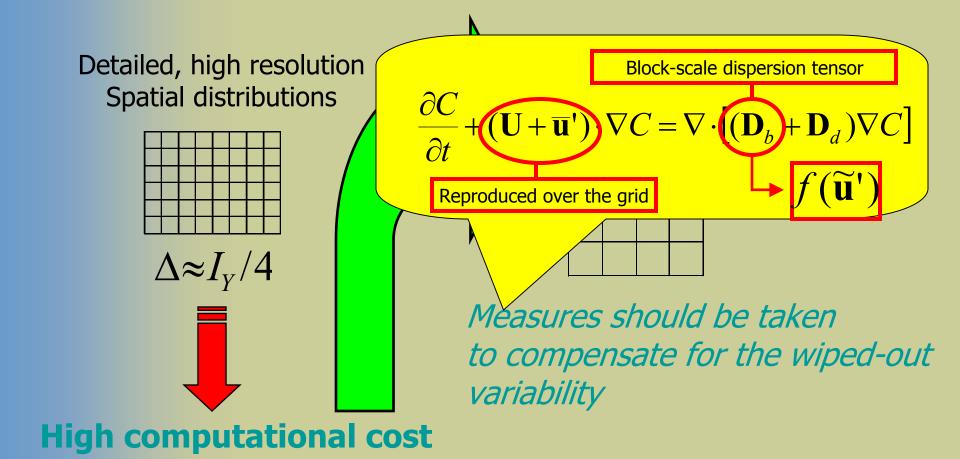
Subsurface imaging using GPR at the Oyster site in Virginia:



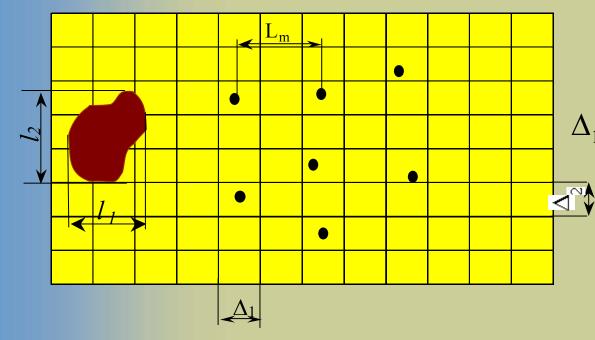
Hubbard et al., Water Resources Research, 37(10), 2001

Detailed Site Characterization and Fine Grid Simulation

$$\frac{\partial C}{\partial t} \underbrace{(\mathbf{U} + \mathbf{u}')}_{O} \nabla C = \nabla \cdot [\underbrace{(\mathbf{D} + \mathbf{D}_d)}_{O} \nabla C]$$
Heterogeneous
velocity field
MONTE CARLO SIMULATIONS



Length-scales

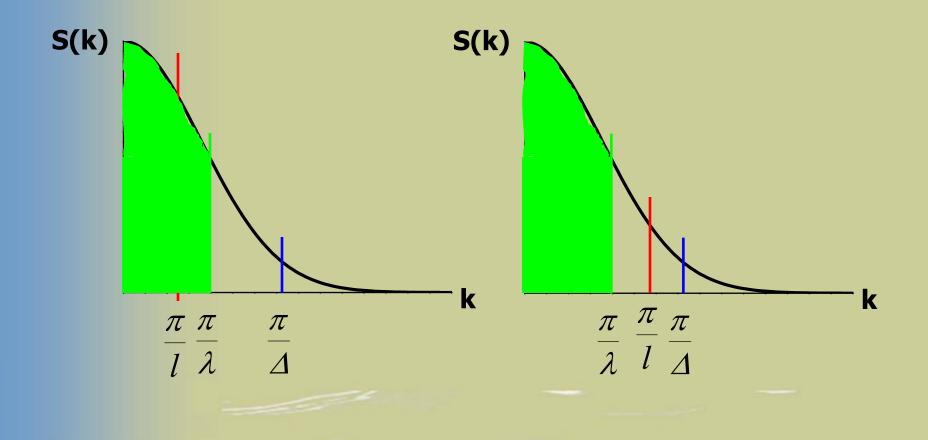


 l_1, l_2 : plume dimensions L_m : spacing between measurements Δ_1, Δ_2 : grid dimensions 2λ : smallest length scale reproducible on the grid

Practical limitation $\lambda > \Delta$

Nyquist Theorem: relates between the sampling scale and the identifiable scales

LARGE PLUME



Block-scale macrodispersion

$$Y = \ln K; \quad Y = m_{Y} + \overline{Y'} + \widetilde{Y'} \quad \text{Wiped-out variability}$$

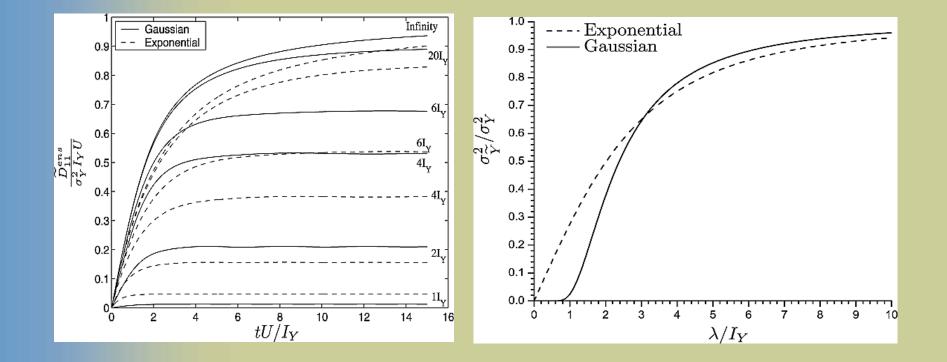
Variability reproduced
directly on the grid
$$D_{ij}(t) = D_{ij}(t) + D_{b,ij}(t)$$

$$\widetilde{D}_{b,ij}(t) = \frac{U^2}{(2\pi)^{m/2}} \int_0^t \left[\int_{-\infty}^\infty \dots \int_{-\infty}^\infty e^{-ik_1 Ut'} \left(\delta_{1i} - \frac{k_1 k_i}{k^2} \right) \left(\delta_{1j} - \frac{k_1 k_j}{k^2} \right) F(\mathbf{k}) \hat{C}_Y(\mathbf{k}) d\mathbf{k} \right] dt$$

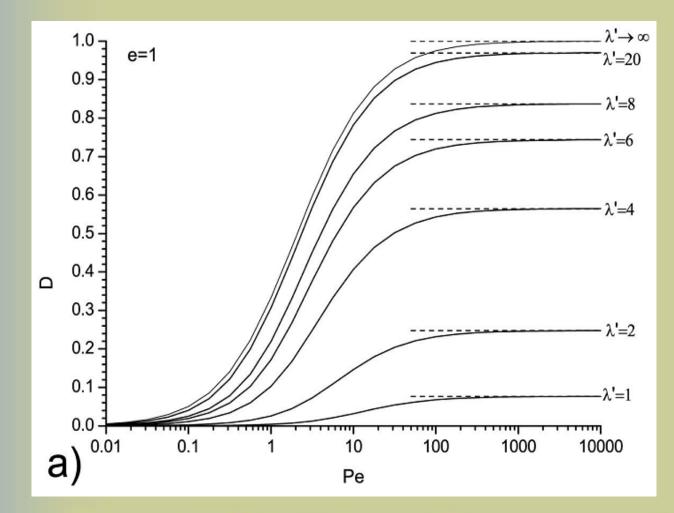
HIGH PASS FILTER $F(\mathbf{k}) = \begin{cases} 0 & \text{for } |k_i| \\ 1 \end{cases}$

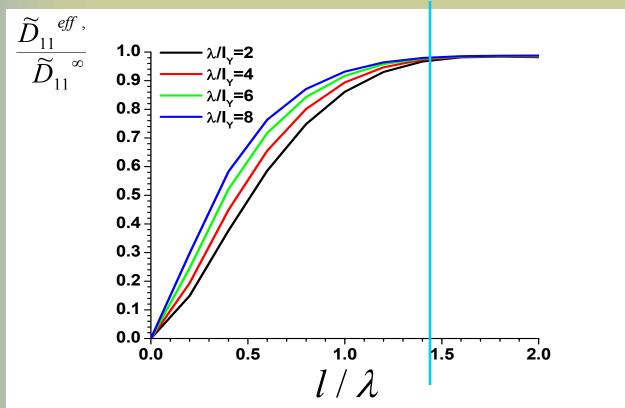
or
$$|k_i| \le \pi / \lambda_i$$
, $i = 1, ..., m$
otherwise

longitudinal block-scale macrodispersion



Longitudinal macrodispersion is a function of $Pe=UI_{Y}/D_{d}$. The λ ' values denote the dimensions of the homogenized regions.





The block-scale macrodispersion reaches the ergodic limit for $l / \lambda \approx 1.5$

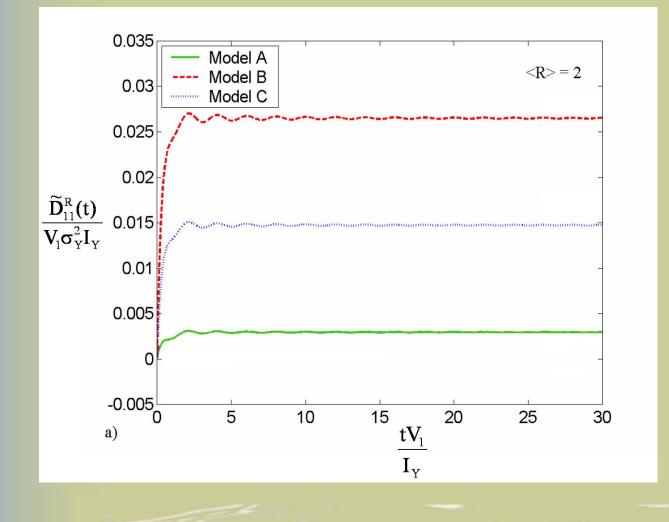
At this ratio, the plume becomes ergodic (=deterministic), and no-longer a function of the plume scale.

First-order Instantaneous Sorption

$$\ln[K_d(\mathbf{x})] = aY(\mathbf{x}) + W(\mathbf{x})$$

- Negative correlation between the hydraulic conductivity and the distribution coefficient is often applicable. Positive correlation is also plausible. We will consider the extremes:
- (A) perfect positive correlation;
- (B) perfect negative correlation and
- (C) no correlation.

Longitudinal Macrodispersion with Spatially variable distribution coefficient (for λ =1)



Summary

- A theory is presented for modeling the effects of sub-grid scale variability on solute mixing, using block-scale macrodispersion coefficients;
- The goal is to allow flexibility in numerical grid design without discounting the effects of the sub-grid (unmodeled) variability, while at the same time:
- Avoiding unnecessary high grid density;
- The approach incorporates several concepts:
 - Rational treatment of the relationships between the various length scales involved;
 - Nyquist's Theorem is used to separate between the length scales affecting mixing and those which affect advection. The outcome is a Space Random Function;
 - Ergodicity: The block-scale macrodispersion coefficients are defined in the ergodic limit (about 50% larger than the scale of the homogenized blocks), which allows to treat them as deterministic;

- Rubin, Y., Applied Stochastic Hydrogeology, Oxford University Press, 2003;
- Rubin, Y., A. Bellin, and A. Lawrence, Water Resources Research, 39(9), 2003;
- Bellin, A., A. Lawrence and Y. Rubin, Stochastic Env. Research and Risk Analysis (SERRA), 18, 31-38, 2004.