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Abstract.

The fundamental question we consider in this paper is how to allow flex-

ibility in numerical grid design without discounting the dispersive action of

the unmodeled variability. In doing that, we wish to preserve the interplay

between all relevant length scales: those relevant to the spatial variability,

as well as those created by design. In this study we extend and test the con-

cept of block-scale macrodispersion introduced by Rubin et al. [1999] for mod-

eling unresolved hydraulic property variations at scales smaller than the nu-

merical grid blocks. We present closed-form analytical results for the block-

scale macrodispersion, and test them numerically. Closed-form analytical re-

sults are presented for the large time aymptotic limits, and it is shown that

these limits are attained very fast. The conditions of applicability are inves-

tigated, and we show that ergodicity with regard to block scale heterogene-

ity is attained surprisingly fast.
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1. Introduction

Modeling of contaminant transport in the subsurface requires to consider many length

scales, as illustrated in Figure 1. First let us define the space random function (SRF)

Y , representing the spatial variability of the log conductivity. The integral scale of Y ,

IY, i, with the subscript i denoting the Cartesian direction, is the distance over which Y is

strongly correlated. The size of the plume, li(t), must also be considered. Two additional

length scales to consider include the size of the numerical grid blocks, ∆i; the size of the

domain modeled, Li; and finally, λi, the dimension of the homogenized regions (note that

in many applications, λi = ∆i is taken, but for greater flexibility we define homogenized

regions of scales λi possibly larger than ∆i). These length scales are obviously important

in any numerical modeling exercise, but in particular when considering the variability that

is not captured over homogenized regions of the simulated domain vis-a-vis the variability

that acts on solutes bodies by way of advection and dispersion. The effect of these length

scale on transport can be conveniently analyzed in Fourier space, whereby the spatial

variability can be described through a series of wavenumber vectors, k.

With the aid of Nyquist theorem [Bras and Rodriguez-Iturbe, 1985] we can identify λi

and li(t) as important cut-offs. First, |ki| ≤ π/λi defines the variability that is captured

over the grid, while |ki| > π/λi is the variability which is wiped-out due to homogenization,

and which must be modelled indirectly, for example using dispersion coefficients. Then,

there is the set of cut-offs π/li(t), corresponding the the plume’s scales. Here, |ki| > π/li(t)

defines the variability that disperses the solutes. The order relationship between li(t) and

λi is important when modeling the effects of the wiped-out variability. This point is

demonstrated in Figure 2.

D R A F T May 15, 2003, 5:41pm D R A F T



X - 4 RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS

In this paper, we review the concept of block-effective macrodispersion presented by

Rubin et al. [1999] with an application to the case of a hydraulic conductivity field de-

scribed by a Gaussian spatial covariance model. We investigate the case of a non-ergodic

plume and determine the conditions required for applicability of the theory. Next, we

suggest a quick way to obtain the block-effective macrodispersion tensor and finally, we

test numerically the proposed methodology.

2. The block-effective macrodispersion tensor

Let us consider a stationary log-hydraulic conductivity field with mean mY and variance

σ2Y . Following Rubin et al. [1999], we split Y into three components:

Y (x) = mY + Y (x) + Ỹ (x), (1)

where Y and Ỹ are the zero-mean large and small scale fluctuations, respectively. Y

represents the variability that is captured by the grid, and Ỹ represents sub-grid scale

variability that is lost due to homogenization. Subsequently we refer to Y as large scale

variability and Ỹ as the small scale variability. From Nyquist theorem, Y is characterized

by the following covariance in Fourier space:

ĈY (k) =

{
ĈY (k) for |ki| ≤ π

λi
, i = 1, ...,m

0 otherwise
, (2)

In (2), λi, i = 1, ...,m, are the dimensions of homogenized regions, and ĈY is the Fourier

transform of the covariance function of Y , [Rubin, 2003, ch. 3]. k is the vector of

wavenumbers in Fourier space, and m is the number of space dimensions considered in
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the problem. ĈY (k) is related to the spatial covariance CY (r) through [Rubin, 2003, eq.

2.44]:

ĈY (k) =
1

(2π)m/2

∫
∞

−∞

...
∫

∞

−∞

CY (r) eı k · rdmr (3)

where dmr = dr1, ..., drm, and ı =
√
−1 is the imaginary unit.

Following (2), the power spectrum of CY can be decomposed into two separate compo-

nents, representing the large scale and small scale variability, as follows:

ĈY (k) = ĈY (k) + Ĉ
Ỹ
(k) = [1− F (k)] ĈY (k) + F (k) ĈY (k). (4)

In (4), F (k) is the high-pass filter:

F (k) =

{
0 for |ki| ≤ π

λi
, i = 1, ...,m

1 otherwise
. (5)

According to (4) the variances of Ỹ and Y satisfy:

σ2Y = σ2
Y
+ σ2

Ỹ
, (6)

where σ2
Y
and σ2

Ỹ
are the variances of Y and Ỹ , respectively. Although both σ2

Y
and σ2

Ỹ

are smaller than σ2Y , no order relationship exists between Y and Ỹ , and both are of the

order of the standard deviation σY [Rubin et al., 1999]. The covariance of Y is given by:

CY (r) =
1

(2π)m/2

∫ π/λ1

−π/λ1

...
∫ π/λm

−π/λm
ĈY (k) e−ı k · r dmk, (7)

and the variance of Y is obtained by setting r = 0 into (7):

D R A F T May 15, 2003, 5:41pm D R A F T



X - 6 RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS

σ2
Y
=

1

(2π)m/2

∫ π/λ1

−π/λ1

...
∫ π/λm

−π/λm
ĈY (k) dmk (8)

With the variability CY (k) captured by the grid, we are left with the challenge of

modeling the effects of the small-scale variability, C
Ỹ
(k). We propose to do that using

the block-effective dispersion tensor. This concept calls for augmenting the dispersive

action of the large scale variability with tensors representing the effects of the small scale

variability. In doing that, since volume averaging is equivalent to ensemble averaging

Wang and Kitanidis [1999], the distribution of the concentration is characterized by a

support scale of size λ, as a result of the lack of resolution in describing the detailed

actual concentration distribution at scales smaller than λ.

For a complete perspective, let us consider the case where none of the variability is

captured over the grid, and its effects are modeled entirely through a macrodispersion

tensor. The tensor in this case, assume the form [Dagan, 1989]:

D∗

ij(t) =
U2

(2π)m/2

∫ t

0

[∫
∞

−∞

...
∫

∞

−∞

e−ı k1Uτ
(
δi1 −

k1ki
k2

)(
δj1 −

k1kj
k2

)
ĈY (k) dk1...dkm

]
dτ,

i, j = 1, ...,m (9)

where the ensemble average of the velocity, U , points to the x1 direction, and δ is the

Kronecker delta. Note that (9) is limited to small variance of the log conductivity, i.e.,

σ2Y < 1. Rubin et al. [1999] (see equation 38) concludes that the dispersion tensor repre-

senting the effects of the small scale variability, or in other words, the variability which is

wiped-out, is given by:
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D̃ens
ij (t) = D∗

ij(t)−

U2

(2π)m/2

∫ t

0

[∫ π
λ1

−
π
λ1

...
∫ π

λm

−
π
λm

e−ı k1Uτ (δi1 −
kik1
k2

)(δj1 −
kjk1
k2

) ĈY (k) dk1... dkm

]
dτ.

(10)

This derivation, similar to (9), is limited to σ2Y < 1.

In (10), the superscript ”ens” intends to emphasize that this tensor is applicable to

solute plumes which are ergodic with respect to the integral scale of the small scale

(wiped-out) variability. This is in line with discussion by Dagan [1991]. The idea is that

non-ergodic plumes are those which are not too much larger than the integral scale of the

wiped-out variability. As such, the wiped-out spatial variability affects the displacement

of its centroid and cannot be modeled only as a dispersive effect. We shall revisit this

topic in Section 3.

Rubin et al. [1999] applied their results to the case of an exponential covariance. Let

us expand their work for the case of a Gaussian covariance. The power spectrum of the

Gaussian covariance model can be determined by taking the Fourier transform of the

Gaussian covariance model, which, in 2-dimensions, is [Rubin, 2003, ch. 3]

CY (r1, r2) = σ2Y e
−
π
4

[(
r1
IY,1

)2

+

(
r2
IY,2

)2
]

, (11)

where r is the separation distance, leading to

ĈY (k1, k2) =
2σ2Y IY,1 IY,2

π
e−

1

π
(k2

1
I2
Y,1
+k2

2
I2
Y,2
), (12)
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where IY,1 and IY,2 are the longitudinal and transverse log-transmissivity integral scales,

respectively. Substituting (12) into (10) and solving for i = j = 1 as well as i = j = 2, we

obtain the longitudinal and transverse components of the block-effective macrodispersion

tensor for the Gaussian covariance model as follows:

D̃ens
11 (t) = D∗

11(t)−
4σ2Y UIY,1IY,2

π2

∫ π
λ1

0

sin(k1Ut)

k1
e
−I2

Y,1
k2
1

π



∫ π

λ2

0

(
1− k21

k21 + k22

)2
e
−I2

Y,2
k2
2

π dk2


 dk1,

(13)

and

D̃ens
22 (t) = D∗

22(t)−
4σ2Y UIY,1IY,2

π2

∫ π
λ1

0
k1 sin(k1Ut)e

−I2
Y,1

k2
1

π

[∫ π
λ2

0

k22
(k21 + k22)

2
e
−I2

Y,2
k2
2

π dk2

]
dk1.

(14)

D∗

11(t) and D∗

22(t) in (13) and (14) are for the Gaussian covariance case and are given by

D∗

11(t) =
4σ2Y UIY,1IY,2

π2

∫
∞

0

sin(k1Ut)

k1
e
−I2

Y,1
k2
1

π



∫

∞

0

(
1− k21

k21 + k22

)2
e
−I2

Y,2
k2
2

π dk2


 dk1, (15)

D∗

22(t) =
4σ2Y UIY,1IY,2

π2

∫
∞

0
k1 sin(k1Ut)e

−I2
Y,1

k2
1

π

[∫
∞

0

k22
(k21 + k22)

2
e
−I2

Y,2
k2
2

π dk2

]
dk1. (16)

In the isotropic case, IY,1 = IY,2 = IY , closed form results for (15) and (16) are given by:

D∗

11(t) =
UIY
π2 t′3

[
4− 3π t′2 + 2

(
−2 + π t′2

)
e−

π t′2

4 + π2 t′3Erf(

√
π t′

2
)

]
, (17)

and
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D∗

22(t) =
UIY
π2 t′3

[
−4 + 4 e−

π t′2

4 + π t′2
]
, (18)

where t′ = tU/IY is dimensionless time.

Figure 3 depicts the longitudinal (D̃ens
11 ) block-effective dispersion coefficient as a func-

tion of travel time, and as a function of λ. The time dependence of these coefficients

is a well documented effect (Dagan [1984] and also [Rubin, 2003, ch. 8,10], Rubin and

Bellin [1994]). The scale λ plays, as one would expect, a prominent role in determin-

ing the magnitude of these coefficients. As λ increases, a larger part of the variability

is wiped-out, and coefficients increase in magnitude, to compensate for this lose. As λ

increases and more variability is wiped-out, the integral scale of the wiped-out variability

increases as well, and with it the time to reach the large time, asymptotic level. However,

for λ values that can be expected in applications, which are of the order of IY or less,

the time to asymptotus is quite short, and the asymptotic limit can be used throughout

the simulation. We also note the different patterns of D̃ens
11 imparted by the two types of

spatial covariances. This is an outcome of the different distributions of variability between

smaller and larger scales which characterize these covariances, as shown in Figure 4.

The large time asymptotic limit of the longitudinal ensemble average block-scale

macrodispersion coefficient is given by

D̃ens,∞
11 = D∗,∞

11 − U 2
∫

∞

0
CY (Uτ, 0) dτ = σ2Y UIY,1 − σ2

Y
UIY ,1 (19)

where

D R A F T May 15, 2003, 5:41pm D R A F T



X - 10 RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS

IY ,1 =
1

σ2
Y

∫
∞

0
CY (r, 0) dr (20)

is the longitudinal integral scale of Y . From (19) we note that the asymptotic limit of D̃ens
11

can be easily determined from CY , using equations (8) and (20). Closed form expressions

for IY and σ2
Y

for both the exponential and Gaussian covariance models are provided

in Appendix A, allowing a quick computation of (19). In the case of a two-dimensional

isotropic Gaussian covariance,

D̃ens,∞
11 = σ2Y IY U

(
1− erf

[√
π

λ

])
(21)

where we assumed λ1 = λ2 = λ. For λ → ∞, i.e., when the homogenized regions are

infinitely large, D̃ens,∞
11 is equal to σ2Y IYU , the well known result for large time asymptotic

limit of macrodispersion (Dagan [1984]; see also [Rubin, 2003, ch. 8,10])

3. Applications

D̃ens
ij are obtained by ensemble averaging, and as such, are applicable for deterministic

prediction only at the limit where space and ensemble averaging over Y coincide. A solute

body that disperses with D̃ens
ij must satisfy conditions which are investigated below. Our

discussion follows that of Dagan [1991] which investigated the limits of applicability of (9).

In that work solute bodies that disperse with D∗

ij were referred to as ergodic. The notable

difference between the Dagan [1991] and the analysis below is that here we evaluate

ergodicity with respect to a truncated spectrum, Ĉ
Ỹ
(k), and not with respect to the

spectrum in its entirety, ĈY (k).
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Let us consider the case of an instantaneous release of solute with constant concentra-

tion, C0, within the volume, V0, which extends over the thickness of the aquifer, with A0,

which is centered at the origin, representing the horizontal projection of V0. The spreading

of the resulting plume can be described through its spatial moments

Ri(t) =
1

M0

∫
C(x, t)xidx; Sij(t) =

1

M0

∫
C(x, t) [xi −Ri(t)] [xj −Rj(t)] dx, (22)

where M0 = nC0A0 is the total mass of solute released into the aquifer per unit of

thickness, Ri, i = 1, 2 is the i−th component of the trajectory of the plume’s centroid

R, C(x, t) the average concentration over the aquifer’s thickness, and Sij, i, j = 1, 2 are

the second-order spatial moments. For a plume of limited size, the moments in (22) are

not deterministic, and can only be characterized by their statistical moments. The actual

spatial moments are expected to differ from their expected values. In the case of uniform

in the average flow, the expected value of the centroid’s displacement is given by:

〈Ri(t)〉 = δi1Ut (23)

while the second moments satisfy [Kitanidis , 1988; Dagan, 1991]:

〈Sij(t)〉 = Sij(0) +Xij(t)−Rij(t), (24)

where Sij(0) is the second moment of V0 about its centroid, Xij(t) is the particle displace-

ment variance- covariance tensor, and Rij is the variance-covariance tensor of R. Inasmuch

as D∗

ij = 1/2 dXij(t)/dt, the plume becomes ergodic when Rij(t) = 0, and the variance
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of Sij(t) is equal to zero [Rubin, 2003, Section 10.3]. At the first-order approximation in

σ2Y , Rij assumes the following form [Dagan, 1991]:

Rij(t) =
1

A20π

∫

A0

∫

A0

∫
∞

−∞

∫
∞

−∞

cos [k1 (a1 − b1) + k2 (a2 − b2)] [1− cos(k1Ut)]

k21
·

(
δ1i −

k1ki
k2

)(
δ1j −

k1kj
k2

)
ĈY (k1, k2) dk1 dk2 d

ma dmb, (25)

where a = (a1, a2), b = (b1, b2), and k =
√
k21 + k22. Furthermore Xij(t) is given by

[Dagan, 1989]

Xij(t) =
1

π

∫
∞

−∞

1− cos(k1tU)

k21

∫
∞

−∞

(
δ1i −

k1ki
k2

)(
δ1j −

k1kj
k2

)
ĈY (k1, k2) dk1 dk2.(26)

Following the same procedure employed by Dagan [1991], coupled with (5), a relation-

ship analogous to (24) , only applicable to a solute body which disperses due to the action

of Ỹ only, namely:

〈S̃ij(t)〉 = X̃ij(t)− R̃ij(t), (27)

where

X̃ij(t) = Xij(t)−
1

π

∫ π
λ1

−
π
λ1

1− cos(k1tU)

k21

∫ π
λ2

−
π
λ2

(
δ1i −

k1ki
k2

)(
δ1j −

k1kj
k2

)
ĈY (k1, k2) dk1 dk2

(28)

and

R̃ij(t) = Rij(t)−
1

A20π

∫

A0

∫

A0

∫ π
λ1

−
π
λ1

∫ π
λ2

−
π
λ2

cos [k1 (a1 − b1) + k2 (a2 − b2)] [1− cos(k1Ut)]

k21
·

D R A F T May 15, 2003, 5:41pm D R A F T



RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS X - 13

(
δ1i −

k1ki
k2

)(
δ1j −

k1kj
k2

)
ĈY (k1, k2) dk1 dk2 d

ma dmb. (29)

Let us now define the non-ergodic dispersion tensor:

D̃eff
ij (t) = 0.5

d〈S̃ij(t)〉
dt

. (30)

D̃eff
ij is of limited value in applications, since non-ergodic plumes are expected to show

different patterns of evolution. Small plumes are affected significantly by local patterns

of spatial variability, and are less amenable to description using dispersion coefficients.

However, we can use this concept in order to determine the conditions under which

D̃eff
ij → D̃ens

ij . This is important because it will allow us to determine the conditions

under which the plume becomes ergodic with respect to the sub grid variability, and

hence for grid design. Our analysis is focused on A0 as representative of the plume’s

dimensions. Although in principle A0 represents the plume’s initial dimensions, we have

established (see Figure 3) that the pre-asymptotic regime of D̃ens
ij is relatively short, and

hence A0 can be viewed as generally representative of the plume’s scales.

Closed-form expressions for D̃eff
11 and D̃eff

22 for the case of an exponential covariance are

provided in Appendix B, for A0 = l1 × l2, where l1 and l2 are in the x1 and x2 directions,

respectively. Inspection of (28) and (29) reveals that D̃eff
ij (t) → 0 as λi → 0, since

variations of all scales are reproduced on the grid. On the other hand as λi increases,

D̃eff
ij (t) approachesDens

ij (t), because none of the hydraulic property variations are captured

on the grid.

Figure 5 shows the ratio between D̃eff,∞
ij and D̃ens,∞

ij , the large-time asymptotic limits

of D̃eff
11 and D̃ens

11 , as a function of l2 for various values of λ = λ1 = λ2. This diagram

D R A F T May 15, 2003, 5:41pm D R A F T



X - 14 RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS

is useful for determining the conditions that warrant the use of D̃ens
11 . If the difference is

large, λi can be reduced, resulting in a larger value of l2/λ2, and closer to the ergodic limit

where the ratio is close to 1. We have found that when the large-time asymptotic limits

of the two coefficients are close, they are also close at early times. As l2/λ2 increases,

D̃ens
22 − D̃eff

22 declines to zero faster than D̃ens,∞
11 − D̃eff,∞

11 , such that when the use of D̃ens
11

is warranted, the use of D̃ens
22 is warranted, as well.

Figure 5 shows that for l2/λ > 1.5, D̃ens,∞
11 is very close to D̃eff,∞

11 irrespective of λ/IY .

For l2/λ = 3 the relative difference between the two is less than 1%, for the exponential

covariance model (Figure 5a) and 1.8% for the Gaussian covariance model (Figure 5b).

This suggests that the plume becomes ergodic with respect to the wiped-out variability

when it is about 50% wider than λ. Under this condition, the effects of the subgrid

variability can be modelled as Fickian dispersion. In other words, the wiped-out variability

can be accounted for using a dispersive flux, with the dispersion coefficient given by D̃ens
ij .

Figure 6 extends Figure 5 to facilitate applications. It shows l2/IỸ as a function of λ/IY

for different l2/IY ratios. It shows that the transverse dimension of the plume is generally

quite large compared to the integral scale of the small scale fluctuations. That partially

explains the results shown in Figure 5. The grey lines corresponds to l2/λ = 1.5, which

was found in Figure 5 to provide a safe definition of the ergodic limit. Thus, the regions

above the grey lines define the range of scale where the D̃ens
ij theory is applicable.

4. Numerical testing

In this section we report about numerical testing of D̃ens
ij . We will limit our test to

cases where l2 is sufficiently large compared to λ2 to make the D̃ens
ij concept applicable.

The general plan is to simulate transport over a fine grid, such that spatial variability is
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captured in its entirety, followed by coarsening of the grid, and employing D̃ens
ij to account

for the lost variability. More specifically, our goal is to test our theory for λ > ∆, and

with that establish our ability to relax the link between the dimensions of homogenized

regions and grid block dimensions.

Numerical simulations are performed on planar flow in a heterogeneous domain char-

acterized by an isotropic, exponential spatial covariance. The grid blocks are squares of

dimension ∆ ≤ λ. Unconditional realizations of the log-conductivity fields are generated

through HYDRO GEN, the generator of correlated random functions developed by Bellin

and Rubin [1996]. The domain is 48 IY long and 60 IY wide. Solute is released instan-

taneously over an area A0 which is assumed rectangular with sides of length l1 and l2 in

the longitudinal and transverse directions, respectively. Simulations are conducted with

l1 = IY and several transverse dimensions, l2, to simulate plumes of different sizes.

4.1. Fine-grid generation

To make the numerical results for different values of λ insensitive to numerical errors

introduced by the flow solver, in the first set of simulations the numerical grid spacing is

set to ∆1 = ∆2 = ∆ = 0.25 IY , following previously established standards [Bellin et al.,

1992; Chin, 1997]. Numerical experiments conducted by several authors (e.g. Ababou

et al. [1989]; Bellin et al. [1992]; Chin [1997]) have shown that higher wavenumbers have

a negligible dispersive effects. This is also confirmed by the fact that for λ = 0.25 IY ,

the asymptotic large time limit of the effective block-scale macrodispersion coefficient,

D̃eff,∞
11 /(U IY σ

2
Y ) (B5), is equal to 0.003, a value much smaller than D∗

11(t→∞), (equa-

tion (9)).
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The log-hydraulic conductivity is generated at the center of the numerical grid blocks,

and the flow solver is based on the Galerkin’s finite element scheme with triangular ele-

ments obtained by splitting the square in two parts. The particle tracking methodology

to solve for transport is discussed in Appendix C.

4.2. Fine-grid results

Figure 7 compares between numerical and analytical results for the expected value of

the longitudinal spatial moments 〈S11〉 (see equation (22)) for several values of λ as a

function of time. The grid blocks fixed at ∆ = 0.25 IY , irrespective of λ. The results

are for σ2Y = 0.2 and l2 = 10 IY . Unresolved small-scale variability is modeled through

D̃ens
ii (equations (42) and (43) of Rubin et al. [1999]), since, as shown in Figure 5, the

smallest l2/λ, which is equal to 1.7, is large enough such that D̃eff
11 is close to D̃ens

11 . These

large λ results resemble both the analytical solution and the numerical fine-grid solution,

with differences that increase with λ, but do not exceed 3.5% for the unrealistically high

λ = 6 IY at large times. For σ2Y = 1 these differences are 5.2, 7.4 and 5 times larger

than with σ2Y = 0.2, for λ/IY = 2, 4 and 6, respectively, suggesting a linear increase

of the difference with σ2Y . These differences are due to the inability of D̃ens
ii to capture

higher-order terms at scales smaller than λ, and the assumed independence of small- and

large-scale fluctuations in (4), whose effects are accounted for in the fine-grid simulation.

4.3. Effect of grid block size on numerical error

Our previous discussion focused on the D̃ens
ij concept and on its ability to compensate for

the wiped-out variability. In particular we establish the order relationship between l2 and

λ2 (see Figure 1) needed to secure its applicability. The issue we raise now is how much
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we can increase ∆ while maintaining the applicability of Dens
ij . In this regard, one should

be concerned about being able to capture ĈY (k) accurately. Our discussion is motivated

by noting that ĈY (k) is characterized by IY > IY . It is common to employ a grid block

scale which is of the order of ∼ 0.25 IY and hence, with IY > IY , there is some latitude to

work with large ∆. This effect is demonstrated in Figure 8, which shows the increase of IY

corresponding to the increase in λ. Figure 9 compares the average longitudinal moments

of S11 corresponding to different λ values and a fixed l2. We maintained a constant ratio

∆/IY = 0.25 (this obviously translates to different ∆/IY ratios, as shown in figure, as can

be verified with the aid of Figure 8).

Figure 9 shows the relative difference between 〈S11〉 computed with different λ as shown

in the figure and ∆ = 0.25 IY , and 〈S11〉 computed using fine grid ∆ = 0.25 IY and

λ→ 0. The relative difference shown in the figure is ∆S11(t) = [〈S11(t,∆ = 0.25 IY , λ)〉−

〈S11(t,∆ = 0.25 IY , λ → 0)〉]/〈S11(t,∆ = 0.25 IY , λ → 0)〉. We note that in the range of

values investigated, ∆S11 is rather small: for tU/IY > 0.25, its maximum values are 4.7%,

7.6%, and 9.9% for λ/IY = 2, 4 and 6, respectively. To separate errors associated with

D̃ens
ij from numerical error due to large ∆, we repeated the analysis with the moments

shown in Figure 7), which are obtained by using the same refined grid with ∆ = 0.25 IY .

irrespective of λ. The resulting ∆S11 are smaller than in the previous case. Specifically,

the maximum values of ∆S11 for λ/IY = 2, 4 and 6 are 2.5%, 2.7%, and 4.1%, respectively.

The portion of the differences shown in Figure 9 exceeding these values are the consequence

of numerical error, which for the Galerking’s flow solver is proportional to the grid size,

and should not be attributed to our method. We conclude that for small λ the numerical

grid can be designed with the aid of Figure 8 such as to respect the condition ∆ = 0.25IY ,
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while for large λ a smaller grid size is needed to limit numerical error of the flow solver,

and inspection of Figure 8 with IY = 4∆ provides the value of λ corresponding to the

selected ∆.

5. Summary and Conclusions

This paper develops and tests a theory for modeling the effects of sub-grid scale vari-

ability on solute mixing, using block-effective macrodispersion coefficients, following ideas

presented in Rubin et al. [1999]. The fundamental question we consider in this paper is

how to allow flexibility in numerical grid design, on the one hand, without discounting

the dispersive action of the unmodelled variability, on the other. Our approach allows

analysis of grid spacing and elimination of unnecessary high grid density. It is formally

applicable to mild heterogeneity, σ2Y ≤ 1. The block-effective macrodispersion coefficients

depend, in general, on the grid-scale and the plume scale, and they are derived based

on the Nyquist theorem which allows separation between the length scales which affect

mixing and those which affect advection. When the ratio between the plume’s lateral

dimensions and the block’s scales exceeds ∼ 1.5, the dependence on the plume’s scale

vanishes. When this ratio is met, the plume is ergodic with regard to the integral scale

of the wiped-out, subgrid scale heterogeneity, and the block-effective coefficients can in

fact be considered as deterministic descriptors of the effects of the wiped-out variability

on mixing.

Unlike the case of macrodispersion coefficients, the block effective ones reach their

asymptotic limit quite early, for typical plume and grid scales. This implies that in

cases where the block effective macrodispersion coefficients are applicable, they are uni-

form, provided that blocks of equal dimensions are employed. However, it is reasonable
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to expect that the numerical grids be designed adaptively (cf. Durlofsky et al. [1997]),

which allows variable λi and ∆i. In this case, grid blocks of similar dimensions will be

characterized by different D̃ens
ij , depending on the dimensions of the homogenized regions.

Our method allows a systematic analysis of the relationships between the numerical grid

block’s dimensions ∆i (i = 1, ..,m) and the dimensions of uniform regions λi. In appli-

cations, this relationship can be used in different ways. The first is to select ∆i given

λi. Alternatively, it can be used to select λi for given ∆i, when ∆i are determined such

as to minimize numerical error, or to limit the computational burden. In both cases the

plume’s scales li need to be considered as well. For example, following Figure 5, we note

that in planar flow situations we should adhere to a ratio l2/λ > 1.5, in order to be able to

model effectively the effects of the wiped out variability using D̃ens
ij . Once the appropriate

λ is selected, values for D̃ens
ij can be determined using Figure 3 or equation (10). Closed

form solutions for planar flow for the Gaussian and exponential covariance models of Y

are provided as well.

Appendix A: variance and integral scale of the large scale variability

Let us consider first the two-dimensional exponential isotropic covariance model

CY (r1, r2) = σ2Y e−r
′

; r′ =

√√√√r21 + r22
I2Y

(A1)

with the following power spectrum:

ĈY (k1, k2) =
σ2Y I2Y

[1 + (k21 + k22)I
2
Y ]
3/2

. (A2)

Substituting (A2) into (8), and assuming λ1 = λ2 = λ, we obtain after integration:
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σ2
Y
=

2

π
cot−1

(
λ

π2I2Y

√
2π2I2Y + λ2

)
σ2Y . (A3)

The integral scale of Y along the direction x1 is obtained by substituting (7) into (20),

and integrating:

IY ,1 =
π2I2Y

2
√
π2I2Y + λ2 cot−1

[
λ

I2
Y
π2

√
2π2I2Y + λ2

] (A4)

The corresponding expressions for the isotropic Gaussian covariance model, which is

obtained from (11) assuming IY,1 = IY,2, are as follows:

σ2
Y
= erf

[√
π IY
λ

]2
σ2Y (A5)

and

IY ,1 = erf

[√
π IY
λ

]
−1

IY . (A6)

Appendix B: Effective small and large scale plume moments and macrodispersion

coefficients

We consider here a two-dimensional aquifer with constant thickness and spatial corre-

lation of the hydraulic conductivity described by the model (A1). For an instantaneous

release of solute with constant concentration, C0, within the volume, V0, extending over the

entire thickness, b, of the aquifer and with rectangular horizontal projection A0 = l1 × l2

centered at the origin of the coordinate system, the effective longitudinal second-order

moment is given by
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〈S11(t)〉 = S11(0) +X11(t)−
64 σ2Y I

2
Y

l′1
2 l′2

2 π

∫
∞

0

∫
∞

0

k′2
2 [1− cos(k′1 t

′)] sin[
k′
2
l′
2

2
]
2
sin[

k′
1
l′
1

2
]
2

k′1
4
[
k′1
2 + k′2

2
]2 [

1 + k′1
2 + k′2

2
] 3

2

dk′2 dk
′

1

(B1)

where X11 is the longitudinal particle displacement variance obtained by Dagan [1984]

and reproduced here for convenience:

X11(t)

σ2Y I
2
Y

= −0.231647 + 2 t′ + 3

[
(1 + t′) e−t

′ − 1

t′2
+ Ei(−t′)

]
− 3 ln(t′). (B2)

Here and throughout Appendix B, t′ = tU/IY is the dimensionless time, l′i = li/IY , and

k′i = kiIY , i = 1, 2.

Similarly, the large scale effective longitudinal second-order moment assumes the fol-

lowing form

〈S11(t)〉 = X11(t)−
64 σ2Y I

2
Y

l′1
2 l′2

2 π

∫ π

λ′
1

0

∫ π

λ′
2

0

k′2
2 [1− cos(k′1 t

′)] sin[
k′
2
l′
2

2
]
2
sin[

k′
1
l′
1

2
]
2

k′1
4
[
k′1
2 + k′2

2
]2 [

1 + k′1
2 + k′2

2
] 3

2

dk′2 dk
′

1,

(B3)

where

X11(t) = 2 σ2Y I2Y

∫ π

λ′
1

0





(
2 + 3 k′1

2
)
π2 + 3 k′1

2
(
1 + k′1

2
)
λ′

2
2

k′1

√
1 + k′1

2 + π2

λ′
2

2 λ′

2

(
π2 + k′1

2 λ′

2
2
)−

3

π

(
1 + k′1

2
)
cot−1



k′1
π

√√√√1 + k′1
2 +

(
π

λ′

2

)2
λ′

2








(1− cos(k′1 t
′))

k′1
dk′1, (B4)

is the large scale component of the variance of the particle displacement. It represents the

spreading of an ergodic plume in the two-dimensional large scale log conductivity field Y .

In (B3), and (B4) λ′

i = λi/IY , for i = 1, 2.
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The effective longitudinal small scale macrodispersion coefficient, D̃eff
11 , assumes the

following form

D̃eff
11 (t) =

1

2

[
d

dt
〈S11(t)〉 −

d

dt
〈S11(t)〉

]
= Deff

11 (t)−D
eff

11 (t), (B5)

where

Deff
11 (t) = D∗

11(t)−
32 σ2Y U IY

l′1
2 l′2

2 π

∫
∞

0

∫
∞

0

k′2
2 sin(

k′
2
l′
2

2
)
2
sin(

k′
1
l′
1

2
)
2
sin(k′1 t

′)

k′1
3
(
k′1
2 + k′2

2
)2 (

1 + k′1
2 + k′2

2
) 3

2

dk′2 dk
′

1,(B6)

with D∗

11 representing the longitudinal dispersion coefficient of an ergodic plume [Dagan,

1984]

D∗

11(t)

σ2Y U IY
=
−6 (1 + t′) + et

′

[
6 + t′2 (−3 + 2 t′)

]

2 et′ t′3
. (B7)

Similarly, the longitudinal large scale effective dispersion coefficient assumes the follow-

ing form

D
eff

11 (t) = D
ens

11 (t)− 32 σ2Y U IY

l′1
2 l′2

2π

∫ π

λ′
1

0

∫ π

λ′
2

0

k′2
2 sin(

k′
2
l′
2

2
)
2
sin(

k′
1
l′
1

2
)
2
sin(k′1 t

′)

k′1
3
(
k′1
2 + k′2

2
)2 (

1 + k′1
2 + k′2

2
) 3

2

dk′2 dk
′

1,

(B8)

where the longitudinal large scale ergodic dispersion coefficient is given by

D
ens
11 (t)

σ2Y U IY
=
∫ π

λ′
1

0




(
2 + 3 k′1

2
)
π2 + 3 k′1

2
(
1 + k′1

2
)
λ′

2
2

k′1

√
1 + k′1

2 + π2

λ′
2

2 λ′

2

(
π2 + k′1

2 λ′

2
2
)−

3

π

(
1 + k′1

2
)
cot−1


k′1

π

√√√√1 + k′1
2 +

π2

λ′

2
2 λ′

2




 sin(k′1 t

′) dk′1. (B9)
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Similar expressions can be obtained in transverse direction:

D̃eff
22 (t) = Deff

22 −D
eff

22 , (B10)

where

Deff
22 (t) = D∗

22(t)−
32 σ2Y U IY

l′1
2 l′2

2 π

∫
∞

0

∫
∞

0

sin(
k′
1
l′
1

2
)
2
sin(

k′
2
l′
2

2
)
2
sin(k′1 t

′)

k′1
(
k′1
2 + k′2

2
)2 (

1 + k′1
2 + k′2

2
) 3

2

dk′2 dk
′

1,

(B11)

with

D∗

22(t)

σ2Y UIY
=

et
′

(
−6 + t′

2
)
+ 2 (3 + t′ (3 + t′))

2 et′ t′3
. (B12)

Furthermore, the large scale effective transverse macrodispersion coefficient is given by

D
eff
22 = D

ens
22 (t)− 32 σ2Y U IY

l′1
2 l′2

2 π

∫ π

λ′
1

0

∫ π

λ′
2

0

sin(
k′
1
l′
1

2
)
2
sin(

k′
2
l′
2

2
)
2
sin(k′1 t

′)

k′1
(
k′1
2 + k′2

2
)2 (

1 + k′1
2 + k′2

2
) 3

2

dk′2 dk
′

1,

(B13)

with

D
ens

22 (t)

σ2Y U IY
=
∫ π

λ′
1

0




(
1 + 3 k′1

2
)

π
cot−1


k′1 λ

′

2

π

√√√√1 + k′1
2 +

π2

λ′

2
2




−




k′1
(
3π2 +

(
1 + 3 k′1

2
)
λ′

2
2
)

λ′

2

√
1 + k′1

2 + π2

λ′
2

2

(
π2 + k′1

2 λ′

2
2
)





 sin(k′1 t

′) dk′1. (B14)
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Appendix C: Particle tracking methodology

Following the Lagrangian approach, the total mass per unit of thickness, m0 = M0/b =

nC0A0, of solute with constant concentration, C0, released instantaneously within the

volume V0 = A0b, where b is the thickness of the formation, is split into a large number,

NP , of non-interacting particles. Each particle is tracked according to the following

scheme:

Xν
p,i(t) = Xν

p,i(t−∆t) + uνi (X
ν
p(t−∆t))∆t+∆Xν

B;p,i(t), (C1)

where Xν
p,i, i = 1, 2 is the i-th component of the trajectory of the particle p in the

realization ν of the log-conductivity field , uνi is the ith component of the large scale

velocity field obtained numerically by solving the flow equation, ∆t is the time step,

and ∆Xν
B;p,i is the i-th component of the Brownian motion introduced to model block

dispersivity and pore-scale dispersion, if present,

∆Xν
B;p,i(t) = ενp,i

√
2
[
D̃ens

ii (t) +Dd,i

]
∆t. (C2)

In (C2) Dd,i is the pore-scale dispersion tensor and εp,i is a random variable normally

distributed with zero mean and unit variance. Furthermore, ∆t is chosen such that both

∆Xν
B;p and ∆Xν = uν(Xν

p(t −∆t))∆t are much smaller than the grid block size. In our

simulations, this is accomplished with ∆t/(UIY ) = 0.05 and 0.01 for σ2Y = 0.2 and σ2Y = 1,

respectively. Initial spacing between the particles is 0.05 IY in both the longitudinal and

transverse directions. Pore-scale dispersion is neglected in our simulations.

The spatial moments are computed as follows
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Rν
i (t) =

1

NP

NP∑

p=1

Xν
p,i(t), Sν

ij(t) =
1

NP

NP∑

p=1

[
Xν

p,i −Rν
i (t)

] [
Xν

p,j −Rν
j (t)

]
. (C3)

To obtain a representative sample of the statistical population of all possible plume mo-

ments, the transport experiment is repeated in MC independent Monte Carlo realizations

of the log-conductivity field. The statistics of the plume moments

〈Ri(t)〉 =
1

MC

MC∑

ν=1

Rν
i (t), 〈Sij(t)〉 =

1

MC

MC∑

ν=1

Sν
ij(t), (C4)

Rij(t) =
1

MC

MC∑

ν=1

[Rν
i (t)− 〈Ri(t)〉]

[
Rν
j (t)− 〈Rj(t)〉

]
, var[Sij(t)] =

1

MC

MC∑

ν=1

[
Sν
ij(t)− 〈Sij(t)〉

]2

(C5)

are then computed. The ergodic second-order moments Xij are computed by substituting

the moments 〈Sij〉 and Rij obtained by (C4) and (C5) into (24). The number of Monte

Carlo realizations is chosen to control the convergence of var[Sij], the highest order mo-

ment considered, as suggested by [Bellin et al., 1992].
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Figure 1. Illustration of relevant length scales in a two-dimensional domain: li= plume

size, λi = dimensions of homogenized regions (when larger than ∆i), Li = domain size,

∆i = grid block size.
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Figure 2. This figure represents schematically the interplay between l1 and λi in two-

dimensions. In both diagrams, the hatched area (surrounded by solid line) represents

the subdomain of k not affecting mixing, while the subdomain not shaded contains the

wavenumbers that cannot be simulated over the grid: a) this is the case of large plume

li > λi. Here the unmodeled spatial variability is defined by λi and does not depend on

li. The wavenumbers contained in the hatched, shaded area will be filtered out by the

plume scales, and no special action is needed; b) This is the case of a small plume li < λi.

Here the wave numbers that affect mixing are defined by li, not λi. As li increase, we will

observe a transition from the state described in b) to the state described in a).
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Figure 3. The longitudinal ensemble average block-scale macrodispersion as a function

of λ (marked on each curve) and dimensionless travel time with IY,1 = IY,2 = IY and

λ1 = λ2 = λ for a Gaussian covariance model, (13), and an exponential covariance model

(equation 42 of Rubin et al. [1999]).
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Figure 4. Variance of the small scale fluctuations of the exponential and Gaussian

covariance models with IY,1 = IY,2 = IY , and λ1 = λ2 = λ.
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Figure 5. Ratio between the asymptotic large-time limits of the longitudinal effective,

D̃eff
11 , and ensemble average, D̃ens

11 , block-scale macrodispersion coefficients versus l2/λ for

l1 → 0 and several values of λ = λ1 = λ2; a) For the exponential isotropic covariance

model (A1); b) For the Gaussian isotropic model (11).

D R A F T May 15, 2003, 5:41pm D R A F T



RUBIN ET AL.: BLOCK-EFFECTIVE MACRODISPERSIVITY FOR NUMERICAL SIMULATIONS X - 33

PSfrag replacements

λ/IY

l 2
/I

Ỹ
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Figure 6. l2/IỸ as a function of λ/IY for several values of l2/IY (marked on the curves)

for the exponential isotropic covariance (A1), (solid line), and the Gaussian isotropic

covariance (11), (dashed line). The grey lines correspond to l2/λ = 1.5. The regions

above the lines can be assumed to safely satisfy the ergodic limit D̃ens
11 = D̃eff

11 .
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Figure 7. Unconditional 〈S11〉 for different λ for a transverse source size of l2/IY = 10.

Diamonds indicate the moments obtained with the fine-grid simulation. The other symbols

indicate numerical moments obtained by performing transport experiments on large scale

velocity fields and accounting for unresolved small scale variability with the ensemble

average block-scale macrodispersion. The first-order solution for 〈S11〉, (B1), is indicated

with a solid line. In all cases σ2Y = 0.2, λ1 = λ2 = λ, and ∆ = 0.25IY .
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Figure 8. The ratio of the integral scale of Y to that of Y as a function of λ for both

exponential (A1), and Gaussian (11), spatial correlations of hydraulic conductivity with

IY,1 = IY,2 = IY and λ1 = λ2 = λ.
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Figure 9. Relative difference, ∆S11, for several block sizes and values of λ. Numerical

simulations are performed choosing ∆ in such a way as to maintain constant the ratio

between ∆ and IY , the integral scale of the large-scale spatial variability. In all cases

λ1 = λ2 = λ, ∆1 = ∆2 = ∆, σ2Y = 0.2 and l2 = 10IY .
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