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ABSTRACT 

Methods for determining the parameters necessary 
for modeling fluid flow and contaminant transport in 
the shallow subsurface are in great demand. Soil 
properties such as permeability, porosity, and water 
retention are typically estimated through the 
inversion of hydrological data (e.g., measurements of 
capillary pressure and water saturation).  However, 
ill-posedness and non-uniqueness commonly arise in 
such inverse problems making their solutions elusive.  
Incorporating additional types of data, such as from 
geophysical methods, may greatly improve the 
success of inverse modeling.  In particular, ground-
penetrating radar (GPR) has proven sensitive to 
subsurface fluid flow processes.  In the present work, 
an inverse technique is presented in which 
permeability distributions are generated conditional 
to time-lapsed GPR measurements and hydrological 
data during a transient flow experiment.  Specifically, 
a modified pilot point framework has been 
implemented in iTOUGH2 allowing for the 
generation of permeability distributions that preserve 
point measurements and spatial correlation patterns 
while reproducing geophysical and hydrological 
measurements.  Through a numerical example, we 
examine the performance of this method and the 
benefit of including GPR data while inverting for 
fluid flow parameters in the vadose zone. Our 
hypothesis is that within the inversion framework that 
we describe, our predictive ability greatly improves 
with the addition of transient hydrological 
measurements and geophysical measurements (GPR-
derived estimates of water saturation, in particular).    
 

INTRODUCTION 

Predicting how quickly a spilled contaminant will 
migrate through the vadose zone and into an aquifer, 
or predicting water availability for crops at root 
zones, for example, depends on soil properties such 
as permeability, porosity, and water retention. 
Techniques are available for measuring point values 
of these fluid flow parameters directly in the field or 
for soil cores in the laboratory. However, fluid flow 
parameters are commonly heterogeneous, and 

uncertainty in their spatial distributions makes it 
difficult to model fluid flow and contaminant 
transport from point measurements alone. 
Furthermore, point measurements are commonly 
limited due to their collection being expensive, time 
consuming, and invasive (with the potential for 
creating preferential flow paths).  Techniques 
allowing for the inference of flow parameter 
distributions are, therefore, in high demand. 
 
In some cases, when spatial statistics at a given site 
are known, conditional simulation techniques may be 
used to generate parameter fields in which point 
measurements and spatial correlation patterns are 
preserved. However, fields generated with such 
techniques do not, in general, accurately predict flow. 
Parameter inversion techniques are typically required 
for this purpose. 
 
The development of inverse techniques has allowed 
for the estimation of flow parameters given both 
point measurements and hydrological data. While 
substantial progress has been made in accounting for 
multi-dimensional spatially heterogeneous flow 
properties in the saturated zone, inverse methods for 
the vadose zone are less common and have been 
mostly concerned with one-dimensional cases, 
usually uniform or layered soil columns (e.g., Kool et 
al., 1985; Mishra and Parker, 1989; Simunek and van 
Genuchten, 1996; Zijlstra and Dane, 1996; 
Hollenbeck et al., 1998; Zhou et al., 2001). This is in 
large part due to the difficulty in overcoming ill-
posedness and non-uniqueness inherent to such 
problems (see Carrera and Neuman (1986) and Russo 
et al. (1991)). One way to make inverse problems 
more amenable to solution is by including additional 
types of data. Incorporating geophysical 
measurements, in particular, into inverse techniques 
for the vadose zone is a promising area of research 
(e.g., Hubbard et al., 1997; Binley et al., 2002; Yeh et 
al., 2002), though still in its infancy.  
 
Generally stated, the inverse problem may be defined 
as estimating a set of relevant flow parameters given: 
1) point measurements of the flow parameters, 2) 
some hydrological measurements collected during a 
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flow experiment, along with 3) any other (possibly 
transient) measurements which are sensitive to flow 
processes, including geophysical measurements. A 
solution to this inverse problem is the parameter 
distribution for which the simulated and measured 
observational data match (assuming that adequate 
models exist for simulating each data type), and 
which preserves parameter measurements.   
 
In the present study, we assume that the absolute 
permeability is the only non-uniform and unknown 
flow parameter, and that it is a randomly varying 
field characterized by known correlation patterns. 
Through inversion, we attempt to approximate the 
permeability field using various combinations of 
measurements including: point measurements of log 
permeability; water saturation in the boreholes 
(attainable by methods such as neutron probe 
logging); and horizontally averaged water saturation 
values (attainable from zero-offset profile GPR 
measurements). Additional types of data including 
capillary pressure and flux measurements can also be 
easily included in the method we describe. 

PROBLEM STATEMENT 

For the current study, observational data are 
generated for a true log permeability model to obtain 
the measurement vector z , where 

and are the borehole saturation and GPR 
measurements (both collected in different locations 
for numerous times), respectively. The 
measurement/estimation error vector v is defined as 
the difference between the true and measured 
observation data. A vector of unknown log 
permeability values is given by a, which, after being 
mapped to the entire flow domain, allows for the 
simulation of observational data , 
where the subsets of borehole saturation and GPR 
data types are similarly denoted as for z . 
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Both a and v are assumed to be independent Gaussian 
distributions with known covariance matrices Ca and 
Cv, respectively. Therefore, the estimation problem is 
of the form of a Gaussian maximum a posteriori 
formulation (e.g., McLaughlin and Townley, 1996), 
where the objective function (OF) is given by  
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where a is the prior estimate of a. The first term in 
(1) represents the mismatch between measured and 
simulated observations for an estimated a, and the 
second term represents the mismatch between a and 
its prior values. Finding a set of parameters a that 

minimizes (1) defines the inverse problem for the 
present study.  

METHODOLOGY 

A means for mapping the discrete values of a to the 
entire flow domain is available through sequential 
simulation. Estimation of a given some 
measurements is then made possible through 
inversion with concepts taken from the pilot point 
method. An overview of the pilot point method is 
given next, followed by a description of our 
implementation of the method, and a brief description 
of the optimization technique employed.  

Pilot Point Framework 
The pilot point method was originally developed in 
work such as Marsily (1984) and Certes and Marsily 
(1991). The essence of the method lies in generating 
a fluid flow parameter field that honors parameter 
measurements, and then modifying it in select 
locations to obtain a better match between measured 
and simulated observational data, while preserving 
the known spatial correlation pattern. The set of 
points that parameterizes the field are called pilot 
points, and they are estimated through inversion. 
Application of the method, including how the pilot 
point locations are chosen, which observational data 
are used, and details regarding the objective function 
(e.g., weighting of parameters, observational data, 
and prior information) differ greatly among previous 
implementations of the method.  
 
While some of the perceived benefit of early work on 
the pilot point method derived from its flexibility in 
choosing pilot point locations, later innovative work 
involved finding systematic and efficient approaches 
for positioning pilot points. RamaRao et al. (1995) 
proposed a method for adding pilot points 
sequentially, after finding their optimal locations with 
adjoint sensitivity analyses. Some concerns were later 
raised regarding the addition of pilot points in this 
way (Cooley, 2000). In an alternate implementation 
given by Gomez-Hernandez et al. (1997), pilot points 
were placed on a pseudo-regular grid and called 
master points, and inversion for their values was 
performed simultaneously. They found the optimal 
master point spacing to be on the order of 2 to 3 
points per correlation length. 
 
The pilot point framework is well suited for inclusion 
of different data types under varied flow conditions. 
Much of the work mentioned above involved 
horizontal flow in the saturated zone, where the 
parameter of interest was the log transmissivity (or 
the hydraulic conductivity), and observational data 
included steady-state and transient piezometric 
measurements. Wen et al. (2002) extended the 
method of Gomez-Hernandez et al. (1997) to include 
transient tracer data, and found that that combination 
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of (noise-free) piezometric head and tracer data 
improved their ability to predict transport.  
 
In previous work, prior information for pilot points 
was most often implemented through parameter 
constraints (i.e., pilot points were allowed to vary 
freely within strict bounds around the initial values or 
the kriging estimates (e.g., Certes and Marsily, 1991; 
La Venua and Pickens, 1992; Hernandez et al., 
1997). This is equivalent to minimizing (1) without 
the second term, and with the error covariance matrix 
Cv being represented by some relative weighting 
parameter—though it was often assumed that there 
was zero measurement/estimation error. The 
inclusion of prior pilot point information using a 
“Gaussian regularization term” was suggested as a 
potential improvement to the method (McLaughlin 
and Townly, 1996).  

Proposed Implementation 
In the present work, we consider the case of a vadose 
zone model in which absolute permeability is an 
unknown random function, and the remaining flow 
parameters (e.g., porosity and the parameters 
describing the capillary pressure function) are 
considered known and constant. We also assume that 
the possibly anisotropic correlation function (or semi-
variogram) describing the permeability distribution is 
known (e.g., from an outcrop study). If available, 
permeability measurements are assumed to be from a 
support scale equal to that of the grid blocks at which 
flow is modeled and their error distributions known. 
In addition, the measurement error distributions are 
Gaussian with zero mean and known variance.  
 
The objective function we use in this work is 
equivalent to (1), where the diagonal elements of the 
pilot point covariance matrix are given by the kriging 
variance values, and the prior values of the pilot 
points are taken to be the kriging estimates. If no 
measurements are available, then the kriging 
estimates of the prior and the variance values equal 
the population mean and variance, respectively (i.e., 
as prior values become more accurate, more weight is 
given to them).  
 
Since the goal of the method is to predict flow 
phenomena (rather than obtain a smooth model that 
represents an average of all possible models), 
implementation requires multiple inversions with 
different random field realizations (each with a 
different seed number). Each of the resulting models 
is plausible and equally likely given the available 
data. For increasingly well-designed problems, fewer 
realizations are required.  
 
For a given realization, a parameter field is 
generated, and the set of parameters (pilot points), 
whose locations are defined prior to inversion are 

estimated simultaneously through inversion. (Note 
that although there are similarities with this 
implementation to the method of Gomez-Hernandez 
et al. (1997), we will refer to the unknowns as pilot 
points rather than master points). Inversion involves 
perturbing values at these points, re-generating the 
parameter field using sequential simulation (in 
essence propagating the perturbations throughout the 
parameter field), simulating flow and GPR with the 
perturbed field, and then evaluating the objective 
function. The final model is that for which measured 
and simulated observational data match best. 

Implementation details 
The method we propose here has recently been 
implemented in iTOUGH2 (Finsterle, 1999), a code 
that provides inverse modeling capabilities to the 
TOUGH2 flow simulator (Pruess, 1999). An outline 
of the steps in the procedure is as follows: 
 
1) Measurements are collected in a field test (or 

synthetic data are generated for synthetic study). 
2) The number and locations of pilot points is 

defined. 
3) For a given realization (random field seed 

number), a permeability field a is generated. This 
field is modified in steps 5-6.    

4) Simulated measurements zsim are generated, and 
used to calculate the initial value of the objective 
function. 

5) Pilot point values are perturbed via an 
optimization algorithm (described in the next 
section), and a new field (with the same seed 
number) is generated using the newly perturbed 
values. The pilot points are treated as data points 
in the sequential simulation such that 
perturbation of a pilot point value is propagated 
throughout the region near that point, the extent 
of influence depending on the correlation range 
of the model.  

6) Simulated measurements zsim are generated with 
the perturbed field obtained from (5), and used to 
calculate the new value of the objective function. 

7) Steps 5 – 6 are repeated until the solution is 
found.  

Optimization algorithm 
The success of any inversion depends on the careful 
choice and implementation of optimization 
algorithm. Parameter inversion methods are most 
commonly performed using gradient based methods 
(e.g., the Levenberg-Marquardt technique). But, 
because of the complex nature of inverse problems in 
the unsaturated zone, the use of non-gradient 
methods for optimization problems in the unsaturated 
zone has also been suggested (Pan and Wu, 1998). 
While usually less efficient than gradient-based 
methods, non-gradient methods such as Simulated 
Annealing and Downhill Simplex are robust, less 
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sensitive to initial conditions, and require no 
assumptions to be made about the objective function 
such as it being quadratic or smooth (Pan and Wu, 
1998).  
 
For the example shown next, we found the 
application of gradient-based methods to be unstable. 
However, inversion using the Downhill Simplex 
method was found to work well. Two consecutive 
iterations were performed for each realization to help 
ensure identification of the global minimum. Details 
of the Downhill Simplex method and its 
implementation are not given here but have been well 
documented elsewhere (e.g., Nelder and Mead, 1965; 
Press, et al., 1992).  

NUMERICAL EXAMPLE 

Ponding Experiment  
Here we consider a two-dimensional vadose zone 
model extending 3 meters deep and 4 meters in the 
horizontal direction with 10 cm nodal spacing in the 
vertical and horizontal directions. The saturation 
values of the upper boundary of the model are 
allowed to vary during an infiltration test, but are 
considered to be known. To represent the water table, 
saturation values along the lower boundary of the 
model are kept fully saturated. The vertical sides of 
the model are modeled as no-flow boundaries. See 
Fig. 1 for a schematic of the model.  
 
The soil properties of the model (i.e., the hydraulic 
conductivity and capillary pressure functions), are 
described by a commonly used parametric 
formulation (van Genuchten, 1980). All of the 
parameters characterizing the soil properties are 
constant except for the absolute permeability, which 
is a randomly varying field. Specifically, a log 
permeability field was generated using sequential 
Gaussian simulation (SGSIM) (Deutsch and Journel, 
1992). This field, shown in Fig. 2a, was generated 
using an anisotropic Gaussian correlation function 
with effective horizontal and vertical ranges of 1.5 m, 
and 0.75 m, respectively, and with a variance of 0.5 
m2, and a nugget value of 0.01 m2.  
 
To simulate a ponding infiltration experiment, fully 
saturated conditions were imposed at the surface over 
a 1 m region (between the horizontal positions of 1.5 
m and 2.5 m as seen in Fig. 1) for 4 hours duration. 
Following that, the entire surface was returned to pre-
infiltration conditions (water saturation equal to 0.3).  

Synthetic Observations  
Hydrological and geophysical measurements were 
simulated during the ponding experiment and were, 
thereafter, considered to be the measured data. For 
this purpose, two boreholes were “placed” in the left 

and right sides of the model (at x = 1 m and 3 m, 
respectively, in Fig. 1) extending from the surface to 
the water table. Permeability measurements were 
taken from each borehole at 30 cm spacing 
(corresponding to the same support volume used for 
the flow modeling) giving 20 point measurements. In 
each borehole, water saturation measurements were 
also taken at 20 depths (between -0.1 m and -2.1 m, 
with a 10 cm interval) at 35 points in time over a 
period of 12 hours. Zero-mean noise from a normal 
distribution with variance of 0.01 was added to the 
synthetic saturation data to simulate measurement 
error.  
 
In addition, we wish to evaluate the potential benefit 
of including crosshole GPR measurements in the 
flow inversion. In particular, zero-offset profile 
(ZOP) measurements are considered in this study. To 
obtain a ZOP data set, the source and receiver 
antennas are placed in separate boreholes and kept at 
equal depths, and electromagnetic (EM) waves are 
propagated between the boreholes at different depths, 
and waveforms are recorded. The travel times may 
then be used as observational data for inversion. Or, 
since the travel path is known, the travel times may 
be converted to EM wave velocity, which can be 
converted to dielectric constant, and then to water 
saturation through a petrophysical model (e.g., Roth 
et al., 1990). A water saturation profile derived from 
ZOP GPR measurements represents the average 
inter-borehole saturation for various depths at a given 
time. 
 
For the present study, horizontally averaged water 
saturation values are calculated within iTOUGH2 for 
each time as a proxy for simulated ZOP GPR 
measurements. This is partly justified by considering 
that water saturation profiles derived from 
simulations with a finite difference method matched 
the pseudo-GPR profile calculated in iTOUGH2 (not 
shown). Zero-mean noise from a normal distribution 
with variance of 0.01 was also added to the pseudo-
GPR measurements to simulate measurement error.  

Inversion with Different Data Types 
The inversion procedure is now evaluated for several 
combinations of data types and compared to models 
obtained through conditional simulation. Fig. 2b 
shows a log permeability model generated 
conditional to some permeability point measurements 
(at locations indicated with black dots). The model 
obtained through inversion of the GPR measurements 
alone is shown in Fig. 2c. Fig. 2d shows the model 
obtained through inversion using GPR and borehole 
saturation measurements. For the cases where 
inversion was performed, (c) and (d), the pilot point 
locations are indicated by open circles, and the 
observational measurement locations are marked with 
open squares (GPR measurements measure the 
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average water saturation between the two open 
squares at each depth).  
 
Note that the measured permeability values from (a) 
are preserved in each of the models shown in (b) – 
(d). Also note that while the same seed number was 
used for obtaining these models, a different seed 
number was used for generating the true model (a).  
 
The permeability model obtained with borehole 
saturation and GPR measurements (d) appears to best 
reproduce the true model (a) in the region between 
the boreholes. For example, both models show a high 
permeability zone at horizontal position of 1.5m and 
a depth of -0.7m. However, deviation from the true 
model is seen between the true model and all other 
models in the region below -2m (between the 
boreholes), where no observation data were collected. 
 
How well the models in (b) – (d) predict the 
observational data (water saturation in the left and 
right boreholes, and that derived from the pseudo-
GPR measurements) is shown in Fig. 3. For the first 
case, none of the observational data were used to 
obtain the model, and the mismatch between 
measured and predicted is large (Fig. 3a). For the 
second case mentioned above, the GPR 
measurements alone were used in the inversion, and 
the measured GPR values are predicted, though the 
measured borehole saturation values are not (Fig. 3b). 
For the third case, both data types were used in the 
inversion, and the values in each synthetic data set 
are well predicted (Fig. 3c). 

Inversion Performance 
Performance of the inversion procedure is now 
evaluated by comparing the real breakthrough curves 
at several control planes (depicted in Fig. 1) with the 
breakthrough curves generated using the various 
models. Several additional cases are included which 
were not described above: an unconditional 
simulation, and an inversion using borehole 
saturation measurements only. Fig. 4 shows that both 
unconditionally and conditionally simulated models 
fail to consistently predict breakthrough at each of 
the control planes. Inversion with borehole saturation 
values improves the prediction, but not as much as 
adding GPR measurements. Adding either GPR or 
both GPR and borehole saturation measurements 
gives similarly good predictions. Note that for the 
best cases, predictions at the lowest control plane (CP 
3, as labeled in Fig. 1) are less accurate than for the 
upper two control planes.  
 
When considering lateral variation within the 
breakthrough curves, slightly different conclusions 
are drawn regarding the benefit of GPR 
measurements. While conditional simulations are still 
highly inaccurate in this case (Fig. 5a), using GPR 

measurements alone is significantly less accurate 
than using both GPR and borehole saturation 
measurements together (compare Fig. 5b and Fig. 
5c). 

CONCLUSIONS 

Inversion with synthetic data indicates that different 
measurement types, including transient hydrological 
and geophysical, namely GPR, allow for good 
prediction of flow phenomena. Pseudo-GPR 
measurements alone were seen to accurately predict 
total breakthrough at several control planes. 
However, to predict lateral variations in breakthrough 
at the control planes, the combination of GPR 
measurements with borehole water saturation values 
were found to work best. 
 
Prediction at the lowest control plane was poorest. 
This is because improvements to initial realizations 
are limited in regions without pilot points or 
observational measurements, like in the region below 
-2 m depth.  
 
Future work includes the investigation of various 
GPR measurement configurations (other than ZOP), 
antenna frequencies (which determine the averaging 
volume for water saturation estimates) and temporal 
sampling strategies (i.e., how often GPR surveys are 
collected). These issues will be more accurately 
investigated when GPR finite difference modeling is 
implemented in iTOUGH2.  
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Figure 1. Vadose zone model used in numerical example. Boreholes are located at horizontal positions of 1 m and 
3 m. Permeability measurements are taken from each borehole at 30 cm spacing (shown as black dots), 
water saturation measurements are taken in the boreholes (at open squares), and the pseudo-GPR 
measurements represent horizontally averaged water saturation values between the boreholes (between 
open squares). Control planes used to test inversion performance are denoted by CP 1, CP 2, and CP 3. 
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Figure 2. True log permeability model: a) used to generate synthetic observations during a ponding experiment, b) 
obtained through conditional simulation, c) obtained through inversion using GPR measurements, and 
d) obtained through inversion using GPR and borehole saturation measurements. The ponding region is 
indicated in Fig. 1.  
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Figure 3. Misfit between simulated (shown with black dots) and predicted (shown with red lines) water saturation 
in left borehole (1st column), right borehole (2nd column), and horizontally averaged water saturation 
from pseudo-GPR measurements (3rd column) for one realization. Three cases are shown: a) conditional 
simulation, b) inversion using GPR measurements and c) inversion using GPR and borehole saturation 
measurements.  
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Figure 5. Breakthrough curves (total flow rates) for three sections of each control planes CP 1, CP 2, and CP 3 
(defined in Fig. 1). Flow rate of each control plane is shown, divided into the left side (1st column), 
middle (2nd column), and right side (3rd column). Three cases are shown: a) conditional simulation, b) 
inversion using GPR measurements and c) inversion using GPR and borehole saturation measurements. 
Breakthrough for the true model is shown with black squares, and inversions using three different seed 
numbers (representing three realizations) are shown in red. 
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