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Abstract. This study presents a stochastic, three-1 Introduction
dimensional characterization of a heterogeneous hydraulic

conductivity field yvit_hin_ the Hanford 300 Area, Washﬁng- Hydrogeological characterization plays a key role in various
ton, USA, by assimilating large-scale, constant-rate injec-projects involving groundwater flow and contaminant trans-
tion test data with small-scale, three-dimensional electro-port_ A detailed three-dimensional (3-D) description of spa-
magnetic borehole flowmeter (EBF) measurement data. Weja| variability in subsurface hydraulic properties is impera-

first inverted the injection test data to estimate the transmistjye for predicting water and solute movement in the subsur-
sivity field, using zeroth-order temporal moments of pres-face (Rubin, 2003). Recent focus on geochemical and mi-
sure buildup curves. We applied a newly developed Bayesiagyohiological reactions in field studies, for example, requires
geostatistical inversion framework, the method of anchoredjow parameters to be fully characterized a priori for testing

distributions (MAD), to obtain a joint posterior distribution tnejr research hypotheses (Scheibe et al., 2001; Scheibe and
of geostatistical parameters and local log-transmissivities athien, 2003; Fienen et al., 2004).

multiple locations. The unique aspects of MAD that make
it suitable for this purpose are its ability to integrate multi-
scale, multi-type data within a Bayesian framework and to
compute a nonparametric posterior distribution. After we

One of the main challenges in hydrogeological character-
ization is to integrate datasets of different types and scales.
Typical field studies usually include two or more different
. R L . complementary sources of information, which may include
combined the distribution of transmissivities with depth- depth-discrete small-scale data such as core analysis, slug

ﬁ:fcrrftg :ﬁlattl\é?—cogi(ilecrt]lviltynplr ofile f:o;‘in ttiheIEBI? ?:t?’ rvve fsts and electromagnetic borehole flowmeter (EBF) tests
th el € r?d t(iev?t- p Tds 0 if\l %ﬁosBa S CianF;r? ?}I Iebe N g nd large-scale data such as pumping tests and tracer tests.
€ l0g-conductivity Tield, using the bBayesian model-basedy ., siochastic modeling of flow and transport becoming

geostatistics. Such consistent use of the Bayesian approacfﬁcreasingly common, it is important not only to combine

throughout the procgdurg enableq us to Syst(.-:'mat_|ca!ly INCOM ast-fitted values from each dataset, but also to correctly
porate data uncertainty into the final posterior distribution.

. . . uantify and weigh errors and uncertainty associated with
The method was tested in a synthetic study and validated usq fy 9 y

. S different datasets, and to transfer the uncertainty to the fi-
ing the actual data that was not part of the estimation. Result y

showed broader and skewed posterior distributions of geosta\F:-])aeI g;(ér?(;cstlgtna(lMgé\évg)ll etal,, 1999; Hou and Rubin, 2005;

tistical parameters except for the mean, which suggests the _ . .
To tackle this challenge, various researchers have applied

importance of inferring the entire distribution to quantify the X

parameter uncertainty. Bayes!an approaches to the problem of subsurfape charac-
terization (Copty et al., 1993; Woodbury and Rubin, 2000;

Chen et al., 2001). Within a Bayesian framework, the prob-

ability density function of a parameter vector can be up-

Correspondence toY. Rubin dated sequentially to include more datasets in a consistent
BY

(rubin@ce.berkeley.edu) manner. In addition, the resulting predictive distribution can
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properly account for the parameter uncertainty inherent in h:
estimating the parameter values from the data (Diggle and ‘ ‘ ‘ ‘ ‘ o wel
Ribeiro, 2002). Two recent developments in particular have  1.161- O EBF well
increased the potential of the Bayesian approach for subsur- 52-10 *_partially screeneq
face characterization: (1) Bayesian model-based geostatis- 1.160% 5_0g22708 . 1
tics, and (2) the method of anchored distributions (MAD). 82-07 5_pg 22 12

Bayesian model-based geostatistics, introduced by Ki- 11608 *ez2s 2 ]
tanidis (1986) and Handcock and Stein (1993), assumes a 29112727 ©2-15 °2720 22
parametric model for a spatial stochastic process and in-£ ; 1607 62-14 B2-19,_5g w205
fers geostatistical structural parameters based on small-scal& 52-13 E2-18 % f320‘31
datasets or point measurements (Diggle and Ribeiro, 2006).8 , ,..d 917 @2-21 e2-24 |
While the traditional variogram approach determines best- 5323 83-25 ©2-23
fitted estimates of geostatistical structural parameters and | *3;330—32 @3-29 |
their asymptotic confidence interval, the Bayesian model- %31 308
based approach yields a posterior distribution of the parame- 93-24
ters. Diggle and Ribeiro (2006) showed that correlation pa- 11604 . 1
rameters such as variance and scale follow non-Gaussian and 93-26
skewed distributions, which suggests that the first two mo-  169% ]

ments are not enough to characterize the distribution. 5.9422 5.9423 5.9424 5.9425 5.t9426 5.9427 5.9428 5.9429
. . . . easting,m
The method of anchored distributions (MAD) is a gen- 9 x1d

eral Bayesian method for inverse modeling of spatial ran-
Y 9 P Fig. 1. Site map of the IFRC site (The coordinate system follows

dom fields that addresses complex patterns of spatial vari: . .

- . . the convention used at the Hanford site).
ability, multiple sources and scales of data available for char-
acterizing the fields, and the complex relationships between

observed and target variables (Zhang and Rubin, 2008a, b; The particular difficulty in inverting injection-test or

Rubin et al., 2010). The central element of MAD is a Néw ,,mping-test data is the computational effort associated with
concept called “anchors”. Anchors are devices for localiz- 5 long time series. Li et al. (2005) and Zhu and Yeh (2006)
ing large-scale data: they are used to convert large-scalgyaye applied temporal moments of drawdowns to estimate
indirect data into local distributions of the target variables. 7 54 storativityS fields. The sandbox experiment by Liu
The goal of the inversion is to determine the joint distribu- & 4. (2007) has shown that the moment approach can suc-
tion of the anchors and structural parameters, conditionec&essfu"y characterize 4 field. The advantage of employ-
on all of the measurements. The structural parameters dq-ng temporal moments is that we can compute them using
scribe large-scale trends of the target variable fields, Wherea&eady-state flow equations, which can reduce the computa-
the anchors capture local heterogeneities. Following the intjona| burden significantly. In addition, when the interest is
version, the joint distribution of anchors and structural pa-|imited to 7. the zeroth-order temporal moment can elimi-

rameters can be directly used to generate random fields qf5te the effects of the uncertainty i since it does not de-
the target variable(s). Different from most of the other inver- honq ons (Zhu and Yeh, 20086).

sion methods that determine a single best estimate of the field |, ihe following sections, we first describe the site and the

and asymptotic uncertainty bounds (Kitanidis, 1995; Zhu andgyserimental procedure. We then present our approach, in-

Yeh, 2006; Ramarao et al., 1995), MAD yields a posterior |,,qing the geostatistical inversion framework and the infer-

distribution of the parameters. ence of the 3-D geostatistical parameters. After presenting
In this paper, we assimilate EBF tests and constant-ratgne jnversion results in a synthetic study to demonstrate and

injection tests for characterizing a 3-D hydraulic conduc- verify our approach, we discuss the results using the actual
tivity K field at the Integrated Field Research Challengedata at the site.

(IFRC) site in the Hanford 300 Aredttp://ifchanford.pnl.

gov). Since the EBF tests yield only relatie values along

each of the EBF test wells, we need a local transmissiity 2 Site and experiment description

value at each of the EBF test wells to convert the relative val-

ues to absolut& values (Javandel and Witherspoon, 1969; The Hanford 300 Area is located at the southern part of the
Molz et al., 1994; Young et al., 1998; Fienen et al., 2004). Hanford Nuclear Reservation one mile north of Richland,
The localT values can be determined by inverting the large- Washington, USA. The IFRC site is located within the foot-
scale constant-rate injection tests. This assimilation requireprint of a former disposal facility for uranium-bearing lig-
us to quantify the uncertainty ifi values based on the injec- uid wastes known as the South Process Pond, approximately
tion tests and to combine that uncertainty with the one from250 m west from the Columbia River. As is shown in Fig. 1,
the EBF data. the triangular well field consists of 25 wells fully screened
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through the saturated portion of the Hanford formation, tengeneral pattern was observed to some extent at most of the
wells partially screened at different depths, and one deepnonitoring well locations.

characterization well (Bjornstad et al., 2009). The more detailed description of the site and data is avail-

In this study, we focus on the saturated portion of theable in Bjornstad et al. (2009) and Rockhold et al. (2010).

highly permeable and coarse-grained Hanford formation,
which is a shallow unconfined aquifer. The main lithol-
ogy is a poorly sorted mixture, dominated by gravel up to
boulder size, with lesser amounts of sand and silt (Bjorn-
stad et al., 2009). It overlies the Ringold formation, the up-

per portion of which is a continuous low-permeability layer

o . : ert the large-scale injection tests to characterize the?2-D
consisting of cohesive and compact, well-sorted fine sancrield We apolv MAD to invert the zeroth-order moments of
to silty sand. The saturated thickness is variable over the ~ pply

site, ranging from about 5m to 8 m, with daily and seasonalPressure build-up curves at multiple observation wells. As

. . . a result, we obtain a joint posterior distribution Bfat the
fluctuations of the water table in response to changes in thPEBF test wells. Second, we combine this distribution with

river stage. The prior estimates of hydraulic conductivity are S

1000-100 000 m/day for the Hanford formation and 0.01—the EBF data for determining the absolll;[a/alu_es. Instead_

3.00 m/day for the Ringold formation (Meyer et al.. 2007) of a singleK value at each of the EBF data point, we obtain
' N ... the distribution ofK at each point. Based on the distribution

The aquifer in the Hanford formation has been very dif- . -
. ) . . of the absolut&, we infer the 3-D geostatistical parameters,
ficult to characterize, since typical methods, such as perme- . . -
using the Bayesian model-based geostatistics.

ameter tests and slug tests, do not provide reliable results . : :
due to the coarse-grained and highly permeable nature of Compared to direct coupling of the EBF and pumping tests

e sufer (eyer et ., 2007; Neweomer, 2006; ermeul <20 1 L% G008 1 e Sep 2poreact s o 50
et al.,, 2009). In addition, traditional analysis of pumping P ge. bp P

D . ble because we can model the flow process during the injec-
and injection tests yields only the averaged property over

a large domain. since the zone-of-influence expands vertion tests as 2-D planar flow in the horizontal plane, due to
ra id? Combi;lin EBF tests and iniection tes’?s throu h}{he particular site conditions as the following. The coarse-
in\f)ers)(/e. modelin ig one of the few fejasible alternativesgtograined and highly permeable nature of the aquifer caused
characterize theg3-D heterogeneous structure of the a uiferthe elastic response and drainage effect to occur very rapidly
Fourteen constant-rate Fr]\ ‘action tests were con dqucted'(less than 30 s after the injection started), so that the radial
. > Inje flow regime dominated the pressure buildup responses (Neu-
each of which had one injection well and 7 to 10 obser-

vation wells. All the wells used in the tests are fully man, 1975). In addition, despite the large injection rate, the

) maximum pressure buildup at the nearest observation wells
screened over the saturated portion of the Hanford forma- ; L
. . S . was less than several centimeters, which is much smaller than
tion. The distance between the injection and observatlor[he aquifer thickness (5-8m). Although the EBF tests sug-
wells ranges between 8 and 60m. The injection duration d . g 9

and rate are approximately 20 min and 315-318 gpm (1 19_gested vertical heterogeneity in the saturated zone, Dagan et

1.20n? min-1), respectively. The preliminary analysis of al. (2009) recently showed that Dupuit’s assumption is still

X . . valid — when the aquifer thickness is not large compared to
the late-time curve data, using the Cooper-Jacob straight:, o ) :
: : the vertical integral scale, and the ratio between the vertical
line method, has shown that most of the observation wells

yield similar estimates for th values in each test, which 2;3 horizontal integral scale is large, which is the case at this

is considered to be the geometric meanfofTg, over the ’

entire well field, as is mathematically proved b#rgéhez-

Villa et al. (1999). It suggests that the zone-of-influence ex-

pands very rapidly and the conventional pumping test analy3.1.1  MAD framework

sis yields only an effective property, smoothing out the local

heterogeneity at the well field. In this section, we summarize the Bayesian inversion frame-
The EBF test data were obtained at 19 fully screenedwork, called (as indicated above) method of anchored distri-

wells, which yielded 283 depth-discrete relative hy- butions (MAD), which we use to invert the injection test data.

draulic conductivities with 0.3—0.6m depth intervals. This method was introduced by Zhang and Rubin (2008a, b)

The pumping rate was 1.04-1.55gpm (3@ 3- and Rubin et al. (2010) and is summarized here for complete-

3.94x10-3m3min~1), and kept constant during the test at ness.

each well. The vertical profiles indicated that the hydraulic We denote a spatial random processtiy), wherex is

conductivity over the central third of the Hanford formation the space coordinate. We further denote an entire field of

was lower than its top and bottom thirds at many of theby a random vecto¥, and denote a realization of the field

wells.  Although the thickness and contact depths forby 5. The dimension off and j is equal to the number

this lower permeability material vary across the site, thisof elements in the discretized field. The fiddis defined

3 Methodology

For the 3-D characterization, we employ a two-step approach
to combine the EBF and injection-test data. First, we in-

3.1 Geostatistical inversion for transmissivity field

www.hydrol-earth-syst-sci.net/14/1989/2010/ Hydrol. Earth Syst. Sci., 14, 20832010



1992 H. Murakami et al.: Bayesian approach for three-dimensional aquifer characterization

through the vector of model parametéfis#}. Thed part of p(z2|21,0,%) p(z1]0,9)

this vector, called the structural parameter vector, includes a L

set of parameters designed to capture the global features of ~ 1_[ p(z10,9). 3)
Y, such as the mean of the field and correlation structures. =1

;I'_t;)e:g componenthofth_ls vEct(t)r (I:Aonsh|sts ofthz an_chored (;'St'ln Eq. (3), we assume that the data segmentsza,. ..,
ributions, or anchors In short. Anchors are devices use ozL are conditionally independent for a givéf,#}, since
capture local features df that cannot be captured by the

lobal terd. In their simplest f h Id we consider thaff,#} contains information equivalent to
global paramelerd. In Ieir sSimpiest form, an anchorwould ype gata  This equality strictly holds when the data seg-
be error free measurementsiaf Other forms of anchors in-

lud i led with distribut d/ ments are independent of each other — for example, when the
clude measurements coupied with error distributions andiofy,¢a |ocations are beyond the zone-of-influence or zone-of-
anchors that are obtained by inversion.

The data | tor of multinle ob i ¢ 2 ohysi correlation. It approximately holds when the data segments
€ dal 1S a vector of multiple observations ot a physt- 5. only weakly correlated, such as with different types of

cal process. The data can be described by the following equaya, ot the same site. As Hou and Rubin (2005) pointed out,
tion: assuming independence leads to higher entropy and makes
z=M(J)+e, (1) the estimation less informative.

where M is a known function, or a set of functions, numer- 3.1.2 Specification of a 2-D geostatistical model

ical or analytical, of the spatial field, anglis a vector of

zero-mean errors. The goal of the inversion is, first, to deriveHere we specify the geostatistical model for the Z-feld.
a posterior distribution of the model parameters conditioned-€t Y (x) be natural-log transmissivity, (x), at the location
on the data, p(@,#|z). This distribution then allows us to X = (x1, x2) in the 2-D domain. We assume that a vedor

generate multiple realizations of the fidiidfor prediction. containingY at multiple locationsr, follows a multivariate
Using Bayes' rule, we can define the posterior distribution Gaussian distribution with exponential covariance. We de-
of parameters as: fine a structural parameter vectoréss {11, o2, ¢}, including
uniform mearu, variancer2, and integral scalg, which are
p(0,%z) xp(z|0,3)p(#|0)p@). (2 used at a geologically similar site (i.e. unconsolidated glacial

materials) (Rubin, 2003; McLaughlin et al., 1993).

We define a vecto#t(xy) to represent a set of anchors.
Since the anchors are a subset of the figid#|0) is a
multivariate Gaussian distribution with meanand covari-
anceo?R@D) (x4, x5), whereR@ D (x,,xy) is an auto-
correlation matrix as a function af and the locations of
#, xy. The distribution ofY conditioned on the structural
parameters and anchagp$y|@,#) is a multivariate Gaussian
distribution with conditional meapy|y and conditional co-
varianceazR(Yzl'ﬁD), where the mean and covariance condi-
tioned on the anchors are defined as

wherep(#) is the prior distributionp(#|9) is the anchor dis-
tribution given a structural parameter veciolandp(z|0, #)
is the likelihood of data given a parameter s@, #}.

We estimate the likelihoogh(z]0,#) using the Monte
Carlo simulations. Since the model paramet@s}} and
the dataz are connected through the field, we generate mul-
tiple conditional realizations of the fieldl for any given
{6,#}; with each realization, the forward model provides a
prediction ofz in the form of z, according to Eq. (1). In
other wordsy is viewed as a measured outcome from a ran-
dom process, wheredds one of many possible realizations,
given a particular parameter set{éf #}. By generating ran- iyt = 1 +RZD (2 x ) )RCD) (xg x) "L (3 — ),
dom fields for a given parameter s@t ¢} and simulating D) o@D 2-D) 20 1o@D) 4
the physical process on each field, we obtain multiple realXvie =R (0:x) =RETxx) RET s x0) T REH (o) )
izations ofz, i.e., an ensemble @f The ensemble dfisthen 0 eR(2D) (x x) is the auto-correlation matrix fd¥, and
used for estimating the probability density function (pdf) of p@-0), . yis the cross-correlation matrix betwerand
Z. After determining the pdf, it is straightforward to calculate 9
the density at a poirg, p(z|6, %), which is the likelihood. ’

As the dimension ot increases, a larger number of re- 31 3 Specification of likelihood
alizations ofz are necessary to estimate the pdf accurately,
which increases the computational burden. To accommodat@ve consider the dataconsisting ofL injection tests (=1,
the large-dimensional data, we may divide the vegtato L 2,...,L). We dividez into L segments as={z1,22,...,21},
segments as={z1,z2,...,z.}. We can decompose the like- wherez; is the vector containing the zeroth-order moments at
lihood into each segment as, multiple observation wells in thieth injection test. The gov-
p(200,8) = p(21....2.10.9) g;r(l)l\r;% ﬁqxsggzd?)?i.the temporal moment formulation are
=p(zLlz1,.20-1,0, ) In order to determine the likelihoog(z|6,9), we first

p(zr-1121,..-,20-2,0,9).... compute the likelihood in each injection tep(z;|0,).
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Since we found in the forward modeling analysis that the3.2 3-D geostatistical model for hydraulic conductivity
zeroth-order moments are approximately Gaussian, we use field
a multivariate Gaussian distribution for the likelihood esti-
mation. Although nonparametric density estimation is avail- The 2-D inversion of the injection tests yielded a joint dis-
able, the Gaussian-likelihood estimation is computationallytribution of In7" at the EBF well locations. Since we placed
advantageous as the dimension of the data increases. anchors at all those locations, we can use the anchor distribu-
Using the ensemble & simulated on the multiple fields tion directly. Let us denote theThvalues at the EBF well lo-
conditioned on each parameter $@t#}, we calculate the cation by a vecto#ggr, which is a subset af. Marginaliz-
mean and covariance to determipéz;|0,#) (Robert and  ing the other parameters leads to the posterior distribution of
Casella, 2005). When we include the multiple injection tests#esr conditioned on the injection test datas p (¥ esFiz).
in the inversion, we multiply the likelihoods of multiple tests,  Let K (x1, x2, x3) andk(x1, x2, x3) be the absolute and
according to Eg. (3), to obtain the likelihood for the entire relative K values at the locatiom = (x1, x2, x3) in the 3-
datap(z|6,#). We have observed that the zeroth-order mo-D domain, respectively. Based on Javandel and Wither-
ments from the different injection tests are not strongly cor-spoon (1969), we have the correlation between the absolute

related, so that we may use Eq. (3). and relativek values asK (x1, x2, x3) = T (x1, x2)k(x1, X2,
x3) Ib(x1, x2) (Moltz et al., 1994; Fienen et al., 2004), where
3.1.4 Placement of anchors b(x1, x2) is the aquifer thickness at the horizontal location

(x1, x2). We can then determine the natural log-conductivity
The success of MAD depends on placement of the anchorg = |nx at (1, x2, x3) by

from two reasons. First, careful placement of anchors will

maximize their ability to extract information from observa- u(xy,x2,x3) = 9esr(x1, x2) —INb(x1, x2) +INk(x1, X2, x3).(5)
tions. Second, the computational burden is linked to the num-

ber of anchors, and a smaller number would improve com- We use aN-vectork containing all the relative conduc-
putational efficiency. Hence, we need to place anchors (1) ativity values from the EBF data a¥ locationsx, and an-
sensitive locations to the data, (2) to capture local features oyectoru containing all the I& values at the same locations
the field, and (3) according to the goal of the inversion. A ask. Equation (5) allows us to combirleand p(#esrlz)
detailed discussion is available in Rubin et al. (2010). HereiNto p(u|k,z), which is the distribution of: conditioned on
we discuss the issues relevant to our inversion. both the injection test data and the EBF data.

First, to find sensitive locations, we refer to the sensitiv- We construct a 3-D geostatistical model, assuming that
ity analysis. Li et al. (2005) has formulated the sensitivity of #(x) follows a multivariate Gaussian distribution with mean
zeroth-order moments to afnvalue at a specific location, 8 and covariance®R P (x, x)+ v2l), wheren? is the vari-
using the adjoint-state method (Sun, 1994). For the currenfince of variability in Ik, R®P)(x, x) is the auto-correlation
estimate of7" field required in the sensitivity analysis, we matrix foru(x) as a function of the locations, the horizon-
may use a unifornf field, since our priors are only for the tal integral scale., and the vertical integral scalg, | is the
global parameters (i.e., mean, variance, and scale) and wigentity matrix of orderV, andv? is the nugget, which repre-
do not have any local information before the injection test.sents the EBF measurement errors. The structural parameter
In this case, sensitivity is high around observation well lo- vector of the 3-D geostatistical model {8,172, A, Ay, 1%}
cations, which is consistent with findings by Castagna andOur goal here is to obtain a joint posterior distribution of the
Bellin (2009) and Vasco et al. (2000). parameters conditioned on both détaz} throughu:

Second, to capture heterogeneity, we would ideally have
more than one anchor per integral scale. Although the reap (ﬂ,nzykhsku,vzlk,z> =/p(/3,nzvkh,kv,vzlu)p(ulk,z)dw (6)
integral scale is not known in advance, we may consider the
minimum possible integral scale at the site. Anchors outsidg~or the prior distribution of the parameters, we assume the
the well plot, far from any of the observation wells, are not Jeffreys prior for the mean and variance (Jeffreys, 1946),
effective in resolving spatial heterogeneity, so that we needvhich is the least informative prior for those two parame-

fewer anchors outside the well plot. ters. The prior distribution of all the structural parameters is
Third, to achieve our goal, which is to obtain the'lnal- defined as

ues at the EBF well locations, we need anchors at all EBF 1

well locations. All the EBF wells are used as observationp(ﬂ,nz,xh,kv,vz) xS (xh,xv,uz). (7)

wells during the injection tests, so that we do not need addi- n

tional anchors for this purpose. For the rest of the prior distribution (A, Ay, v2), We use

an independent uniform distribution for each{af,, 1., v?}
bounded by each set of the minimum and maximum possi-
ble values. Following Diggle and Ribeiro (Chapter 6, 2006),
we obtain an analytical expression fp¢8, n%, An, Ay, v2|u)

www.hydrol-earth-syst-sci.net/14/1989/2010/ Hydrol. Earth Syst. Sci., 14, 20832010
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= [ ]
60| o
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olution, we determined the standard deviation of measure-

) ] ) o ) ) ment error based on the resolution of the instrument, 0.003 ft
Fig. 2. Configuration of injection and observation wells in each test (0.09 cm) by integrating it over the injection duration

used in this paper. The reference point of local coordinates is at
(594164 m, 115976 m) in the Hanford coordinates. 3.3.2 Prior distribution for MAD inversion

) N o o For the prior distribution of the 2-D structural parameirs
(Appendix B). In addition, based on the joint distribu- \ye ysed three independent uniform distributions bounded by
tion of the structural parameters and determined by  the minimum and maximum values, as are shown in Table 1.
PB. 0% hn ko v ulk,2) = p(B.n? b o, VP W) p(ulk.2),  The prior distributions of each parameter sufficiently cover
we can sample multiple parameter sgsi®, Ax, v, v%, 4}, possible values from the historical data at the site (Meyer et
and generate multiple 3-D random fields conditioned on eachy|  2007) or literature values for similar geological forma-
of the parameter sets. tions (Rubin, 2003). The uniform distributions are consid-
ered to be less informative than Gaussian distributions, which
have been commonly used in the Bayesian geostatistical in-
version (Li et al., 2005). Three thousand set# affe gener-
ated fromp(#) using a quasi Monte-Carlo sampling method

I(Krommer and Ueberhuber, 1998).

To demonstrate our approach, we used seven out of the four- As is shown in Fig. 3, we placed 44 anchors at all the well
teen constant-rate injection tests at the site for the Syntheti?ocations inside the w;ell plot and at sparse locations out-
study, and four for the real data analysis (injection at Well 2'side the well plot, following the discussion in Sect. 3.1.4.
09, 2-18, 2-24, and 3-24). The locations of injection and Ob'For each set of \!/ve generated 12 sets of anchdrdrom
servation wells are well balanced within the IFRC site. Fig- (#10), so that t,he number of prior parameter s@ts?) is

ure 2 shows the configuration of the injection and ol:)servatior{;6 000’_ We gradually added more parameter sets until we
wells for each of the seven tests.

observed the posterior distribution converged — not changing
For each test, we calculated the zeroth-order moments

. . i ; X a:;1ilong with increasing numbers of sets.
multiple observation wells by integrating the pressure build-

up curves. Since the well field is located near the Columbia3z 3.3 Forward simulation in MAD

River, the water table changes according to the river stage

fluctuation. Since the change was mostly linear within Figure 3 shows the 2-D computational domain used for the
20 min after the injection started, we removed the ambienfforward simulations. For simulating the zeroth-order tem-
head contribution by linear interpolation. For quantifying the poral moments on multiple random fields, we followed the
measurement errors, we followed Nowak et al. (2006) and Liapproach by Firmani et al. (2006), since the mathematical
et al. (2008), who determined the errors based on fluctuatiorexpression for the zeroth-order moments is the same as the
or noise in the pressure measurements. Since the noise ne for steady-state flow toward a well.

3.3 Implementation

3.3.1 Organization of constant-rate injection test data
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Table 1. The lower and upper bounds of the prior distribution for the structural parameters of the 2-D transmissivity field.

Minimum Maximum Reference

Mean i, ¥ s—1 (InT) —4.82 2.17 Meyer et al. (2007) (Inverse model estimates)
Variance,a2 0.5 3.0 Rubin (2003), Table 2.1 and Table 2.2
Scaleg, m 8 30 Rubin (2003), Table 2.1 and Table 2.2

* The upper bound and lower boundstimultiplied by the average aquifer thickness 7.62 m.

We used the SGSIM program from GSLIB (Deutsch and
Journel, 1998) to generate spatially correlated Gaussian ran-
dom fields conditioned on eachf set{#f, #}. We then sim-

1 ulated zeroth-order moments on each field, using a finite-
element method with linear elements. We used 250 realiza-

InT, nfls
2

0 tions of random fields and moments for edéhd} to es-
timate the likelihoodp(z|0, #). We gradually added more
£ ; 1 realizations, and found that the likelihood values converged
2 q | I with 250 realizations. The 9000000 forward simulations
% took 60 000 computational hours in total. It was divided into
< 13 several batches, and used up to 9000 cores on the Franklin

supercomputer at the National Energy Research Scientific
-4 Computing Center (Berkeley, USA), each core of which is
a 2.3 GHz single AMD Opteron processor.

3.3.4 3-D geostatistical model

0 50 100

. 1508 After calculating p(u|k,z) from the relativek values and
easting,m

InT values at the EBF well locations, we generated a thou-
Fig. 4. Reference field for the synthetic study. Line A—B is used for sand sets of f_rom _p(1_4|k,_z). For each set ok, we com-
the transect. puted a posterior distributiop(8, 72, An, Ay, v?|u), based on
the uniform prior distribution of, A, andv? bounded by
the values shown in Table 2. We then integrate the distribu-
Firmani et al. (2006) determined the grid and domain sizestion numerically to determing(8, n2, Ax, Ay, v2|k, ).
according to the integral scale. Although the integral scale is
unknown in our framework, we have the minimum or max-
imum possible integral scaléin andémax), Which are the 4 Results and discussion
upper and lower bounds of the uniform prior distribution. We ) i o )
used these two values so that any possible integral scale cafye first t(.astedlthe MA_D_ an(_j numerical setting in a synthe_tlc
satisfy the requirement for the domain and grid sizes. §tudy for inverting the injection test d.ata, and then we applied
The computational grid size is uniform equal toz in It {0 the actual data at the Hanford site.
bothx; andx; directions during the field generation. During
the flow simulations, the grid blocks near the injection well
are divided into non-uniform grid from 0.@4,, at the in- We generated a synthetic reference 2-I fiield with a 2-
jection well location to 0.2min at a distance of Odgin, Sat- D structural parameter sgt, 0’2, ¢} = {—1.8, 1.5, 20}, shown
isfying the condition that the ratio between the neighboring, rig 4 we obtained maximum likelihood estimates of the
block size should not exceed 1.5 (Firmani et al., 2006). Wey,o parameters ds-1.76,1.46,20.0}, with near-exhaustive
determined the domain size such Fhat the observation We"%ampling (one out of every five points) (GeoR package by
were Zhmax away from the boundaries to reduce the bound-gipairg and Diggle, 2001). We then calculated the zeroth-
ary effect. During the flow simulation, we added another ,.qer moments on the reference field and superposed a
buffer zone with widthpmax and uniform?” equal to7g be- ;o4 mean independent Gaussian measurement error, which
tween the field and the boundaries for further reducing the, 54 the same variance as the actual data from the study site.
boundary effect. We intended to satisfynx between any Our inversion process is based on the same sets of injection
observation wells and the boundaries, based on the theory,q gpnservation wells as the actual experiments conducted
developed by Rubin and Dagan (1988). at the IFRC site (Fig. 2). We also combined the different

4.1 Synthetic study for 2-D transmissivity field
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Table 2. The lower and upper bounds of the prior distribution for the horizontal scale, vertical scale and nugget variance of the 3-D hydraulic
conductivity field.

Minimum Maximum  Reference/Justification

Horizontal scale},, m 8 50 Rubin (2003), Table 2.1 and Table 2.2
Vertical scalej,, m 0.5 10 Saturated thicknesd0m
Nugget variancey? 103 0.25 Less than 50% of standard deviation
1 1 ditional tests is more significant for the variance and scale,
which suggests that the estimation of variance and scale re-
\ quires more observations. The improvement, however, is not
g‘ =z /76\-\ significant for more than three tests, and the distributions
5 % 057 /.7 \\\ based on four to seven tests are very close to each other,
A A /:' AR which would suggest that the effect of increasing number of
,/' \\—Q tests could be saturated due to the measurement errors and
0 3 redundancy of information in the data. Although we may ex-
-4 -2 0 2 1 2 3 pect tighter distributions with more information, some of the
Mean, ]n(mz/s) Variance uncertainty cannot be eliminated due to measurement errors
and the limited number of observation wells. In addition,
0.15 the same observation wells were used repeatedly for several
true tests. Yeh and Li (2000) and Zhu and Yeh (2005) also re-
— 1test ported that increasing the number of pumping tests did not
> 0.1 : . . .
2 - = =2 tests improve the estimation above a certain number (three to four
5 —— 3 tests tests in their cases).
R 005(,” == 4 tests To examine the effect of anchors and evaluate the random
[/ S tests fields generated based on the posterior distributions, we gen-
i erated 200000 fields from the posterior distribution of pa-
10 20 30 b rameters (5000 posterior sample parameter sets with 40 fields
Scale,m 7 tests per parameter set), and compared the ensemble with the true

field. Two cases are studied: one based on a single test (injec-
Fig. 5. Marginal posterior distributions of the structural parameters tion at Well 2-18) and the other based on three tests (injection
(mean, variance and scale) in the synthetic study, with their correqt Well 2-09, 2-24, 3-24).
sponding true values. The ones based on the different number of Figure 6 shows the mean and 98% confidence interval of
tests are compared. the predicted Iff fields along the centerline of the well field

as shown in Fig. 4 (Line A-B). The centerline also corre-

sponds to the line passing through large variability, from high
number of injection tests in the inversion: one injection testnear the top to low in the middle of the well plot. The fig-
(injection at Well 2-18), two tests (Well 2-09 and 2-24), three ure also includes five realizations that depict the level of het-
tests (Well 2-09, 2-24, and 3-24), four tests (Well 2-09, 2-18,erogeneity in the randomly-generated fields to be used for
2-24, and 3-24), five tests (Well 2-09, 2-11, 2-18, 2-24 andstochastic simulations. The mean field and random fields
3-24), six tests (Well 2-09, 2-11, 2-16, 2-18, 2-24 and 3—-24)along the line all follows a general trend of the true field,
and seven tests (Well 2-09, 2-11, 2-16, 2-18, 2-19, 2-24 andaspecially so with more tests assimilated. If there were no
3-24). They are compared to show the effect of additionalanchors, the mean field would be a flat line at the global
information from the multiple tests. mean, and the random fields would be distributed around the

Figure 5 shows the marginal posterior distributions of theflat line. Therefore the deviation from such a straight line

2-D geostatistical structural parametéys o2, ¢} based on IS attributed to anchors that capture local heterogeneity. The
the various number of tests, with their corresponding trueUncertainty bounds are found to be tighter near the center,
values. While the mean has a symmetric Gaussian-like diswhere there are more observation wells and more anchors.
tribution, the variance and scale has broad and skewed distrincréasing the number of tests not only reduces the uncer-
butions. The results are improved with increasing number ofi@inty, but also reduces the bias by moving the mean field
tests up to three tests, i.e. the posterior distributions becomgl0ser to the true field.
narrower and biases are reduced. The improvement by ad-

Hydrol. Earth Syst. Sci., 14, 1982801, 2010 www.hydrol-earth-syst-sci.net/14/1989/2010/



H. Murakami et al.: Bayesian approach for three-dimensional aquifer characterization 1997

] trac 0.8 0.8
4 = mean 0.6 !'
* "==98% CI > of -
2L realizations ‘@ ‘B
5 04 5
a) a)
0.2 3
\\
0 ~
- -4 -2 0 2
‘%’ | B Mean, In(nf/s)
) 20 40 60 80 100 120
(@) distance along the line from Point A, m 0.1 - 1 test
U 2 tests
2 — 3 testy
]
5 0.05 ‘== 4 testy
a
0
10 20 30
Scale,m
A ‘ ‘ . B Fig. 7. Marginal posterior distributions of the structural parameters
0 20 40 60 80 100 120 (mean, variance and scale) for the Hanford IFRC site data.
(b) distance along the line from Point A, m

) ) ) ] For the first validation of the 2-D If inversion, we gen-
Fig. 6. Comparison among the reference field, the mean field andy4teq 200 000 fields (5000 posterior sample parameter sets
the 98% confidence interval of the generated fields, along the centgy;, 41 fie|ds per parameter set) based on one test (injection
line of the IFRC well field (Line A-B in Fig. 4), for the inversion A
based on(a) one test (injection at Well 2-18) an() three tests 2t Well 2-09), two tests (injection at Well 2-09 and 3-24) and
(injection at Wells 2-09, 2-24 and 3-24). The gray lines are thethree_' tests (injection at Well 2-09, 2-24 and 3f24)' We thgn
realizations of the fields. predicted the zeroth-order temporal moments in the injection
test at Well 2-18, which was not the part of the estimation.
Figure 8 shows the marginal predictive distributions of the
4.2 IFRC data analysis observed moments at two observation wells, based on one,
two and three tests, compared with the actual data. The true
After we gained confidence from the synthetic study, we ap-yajye is contained within the range of values defining the pre-
plied the same scheme to the data from the IFRC site. Sincgjctive distributions, and the combination of the three tests
the synthetic study indicated that four tests would be enough-,mpro\,es the prediction by narrowing the distributions.
we used up to four tests (the same sets): one injection test A5 another validation, we obtained the maximum a
(injection at Well 2-18), two tests (injection at Well 2-09 posteriori (MAP) estimate of the geometric mean Bf
and 2-24), three tests (injection at Well 2-09, 2-24, and 3-Ts =exp(w), in Fig. 7, which is 0.52 fs~1. We compared
24) and four tests (injection at Well 2-09, 2-18, 2-24, and thjs value withTg estimated from the Cooper-Jacob analysis
3-24). Since the true values are unknown in this case, W§sanchez-Villa et al., 1999), in which we fitted the late-time
validated the posterior distribution by comparing predictions nressure build-up curves at multiple observation wells in the
with the testing set data, i.e., the observations not includecﬁljection test at Well 2-18. The 95% confidence boundf
in the inversion. It is a common procedure in statistics to\ya5 0.38-0.57 As~!. As we expected, our estimate B
divide the dataset into a training set (i.e., data used in inveryorresponded to the estimates based on conventional analysis
sion) and testing set (i.e., data used for testing or validatinggy 5 large-scale injection test.
the inversion result). Figure 9 shows the marginal distribution for the 3-D geo-
Figure 7 shows the marginal posterior distributions of the siatistical structural parameters conditioned on the EBF data
three 2-D structural parameters for the 2-IFifield at the  gnq injection test data. For the horizontal scale, vertical
IFRC site. These three plots show a similar feature to thegcale, and nugget, the upper and lower bounds ofxthe
synthetic study in Fig. 5 such as a Gaussian-like distributiongyig correspond to the bounds of the prior distributions. We
for the mean, broad and skewed distributions for the variancg g see that the marginal posterior distributions of the struc-
and scale, and the effect of increasing the number of injectioRyra| parameters are skewed except for the mean, which sug-
tests in the inversion. gests that the entire distribution is necessary to quantify the
parameter uncertainty.
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0 Well 2-09 0 Well 3-24 0.4 0.4
.15 : : .15 ;
true 03 ] 0.3
—1test 2 2
[%] %}
> 01 > 0.1 \ | 2tests g 02 502 |
2 2 ——3testy 01 /f 01! Jf
a A
0.05 0.05 \ 0 0
-8-6-4-2 0 2 0 5 10 20 40
mean, log(m/s) variance horizontal scale,!
0 0 4
0 20 40 0 20 40 04 30 — ltest
Zeroth—-order moment, m s Zeroth—order moment, m s 03 D testd
_ _ = Zz 20 — 3 tests
Fig. 8. Comparison between the zeroth-order moments observed atg 0.2 S -- 4 tests
Well 2-09 and 3-24 in the injection test at Well 2-18, and predictive e © 10
. L . . . ) : 0.1 /;
posterior distributions from the inversion, including the different
numbers of injection tests. oz 0
0 5 10 0 01 0.2
vertical scale,m nugget variance

The horizontal scale has a particularly broad distribution, Fig. 9. Marginal posterior distributions of 3-D geostatistical struc-
which is not zero at the bounds. This is because availableural parameters of Ik values at the Hanford IFRC site, based on
data is insufficient for narrowing down the distribution (Dig- the different number of injection test.
gle and Ribeiro, 2002; Hou and Rubin, 2005). Inferring
the scale parameters requires different lags (i.e. distances)
among the data points. Although we have many differentthe 3-D characterization. For the injection test inversion, we
lags for the vertical scale along the boreholes, spacing beused MAD, which is a newly developed Bayesian geostatisti-
tween the wells restricts variation in horizontal lags for the cal inversion framework. We inverted zeroth-order moments
horizontal scale. It suggests the importance of setting reaof pressure buildups at multiple observation wells, which can
sonable bounds for the prior distribution based on the infor-€liminate uncertainty in a storage coefficient, as well as sig-
mation from geologically similar sites. nificantly reduce computational cost.

We also compared the distributions based on the different In a synthetic study, we first showed that MAD could suc-
number of tests included in the injection test inversion. Ascessfully infer the geostatistical parameters and predict the
it turned out, increasing the number of injection tests did not2-D InT field. As we included more tests, we could further
reduce the parameter uncertainty in the 3-D structural pafeduce the uncertainty, and better capture the local hetero-
rameters as significantly as in the 2-D parameters. This igeneity. The improvement, however, was saturated at three
because the uncertainty and sparseness of the EBF data otg: four tests due to the measurement errors and redundancy
scures additional information of the increasing number of in-of information in the data, which is consistent with the pre-
jection tests in the 3-D spatial inference. These findings arevious studies (Yeh and Li, 2000; Zhu and Yeh, 2005).
consistent with Li et al. (2008), who also found that the 3-D By applying the method to the actual data, we obtained
characterization of the aquifer was limited by the EBF datathe posterior distribution of geostatistical structural parame-
density. ters and the anchor values of the 2-[T'lfield for the Han-

Figure 10 shows the 3-D mean field, based onford 300 Area IFRC site. We validated the result using the
the 5000 parameter sets generated from the distributiofredictive distribution of the zeroth-moments in the injec-
p(B.n%, An, Ay, v2, ulk,z). We can see the high-low-high lay- tion test that were not part of the inversion. In addition,
ers in InK along the centerline of the field, which is consis- the MAP estimate of the mean7ncoincided with theTg
tent with the observations in the tracer tests later conductedfalue obtained from the Cooper-Jacob analysis, which con-
at the site (Rockhold et al., 2010; Zachara, 2010). firmed our method’s consistency with conventional pumping

test analysis.

We then combined the relative values from the EBF data

5 Summary with the distribution of If” at EBF wells so that we obtain

the distribution of the depth-discrete absoléten the 3-D
In this paper, we presented a Bayesian approach for characlomain. The uncertainty ifff (2-D) is consistently carried
terizing a 3-DK field by assimilating the EBF and constant- on into the IrK values (3-D) as a probability distribution. We
rate injection tests. We employed a two-step approach — firsthus constructed a 3-D geostatistical model for the freld
inverting the constant-rate injection test data for obtainingusing the model-based Bayesian geostatistical approach.
the joint distribution of locall" values at the EBF well loca- We demonstrated the advantages of MAD such that MAD
tions, and then converting the EBF data to lokaalues for ~ was directly connected to the stochastic forward simulations,
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wellzos WS the constant injection condition, we obtairp(x) from the
) equation:
Well 2-09
2 V~(TVmo)+rQ8(x—xp) =0, (A2)
3 with the boundary condition at the Drichlet bound&yy; as,
4 mo = 07 at 1—‘Dl’l ) (A3)
elevation,m 80 whereT (x) is the depth-integratefl value,z is the injection
110 -5 duration,Q is the constant injection rate ang is the injec-
199 tion well location. The Drichlet boundary condition was im-
-6 posed at the nearest observation well location, where:the
— N castingm value is known, in the same manner that Firmani et al. (2006)
40 n ’ -7 imposed a boundary condition at the injection well location.

northingm 20 Note that Eq. (A2) is the same as the one for determining hy-

draulic head under steady-state flow with a constant injection

Fig. 10. 3-D mean IK field in the saturated portion of the Han-
ratet Q.

ford formation. The black dots and lines represent the well loca-
tions. The reference point of local coordinates is at (594 164 m,

115976 m) in the Hanford coordinates. Appendix B

o . . o Bayesian model-based geostatistics for 3-D
and it directly inferred the joint distribution of the param- ¢ ctural parameters

eters to be used as an input of the simulations. Compared
to the other inverse modeling methods that yield only best-According to Diggle and Ribeiro (Chapter 6, 2006), we cal-
estimates and confidence bounds, MAD fully quantifies theculate the posterior distributions of the 3-D geostatistical
parametric uncertainty as statistical distributions, which isstructural parameters conditioned @tx). First, the scales
necessary to capture skewed distributions found for the varis;, anda, and nugget variance? depend only o as
ance and scale parameters. 5 5 1

For the field application, we showed that combining EBF P(Mv*v’ v I") o (M»M’ v )lVgl 2
and injection tests is promising for characterizing a hetero- N _Nt
geneous IX field in a coarse-grained and highly permeable (R(S'D) +v2|)l_? (SZ) ) (B1)
aquifer, where the other conventional techniques fail to pro- . ) .
vide information of local heterogeneity. We found that the where each term is defined as the follows:
3-D characterization is restricted by the EBF measuremenR/A _ [1T (R(3'D) +v2|>_11]—1
density, in the sense that increasing the amount of depth-8 —
averaged information from the injection tests did not con- _ -1
tribute significantly to narrowing down the posterior distri- 8= Vng (RG_D) +v2|> u,
bution of the 3-D geostatistical parameters.

’

ul (R(3—D) +12 )—1u _ 37‘,‘;1/@

§2= , B2
N 1 (B2)
Appendix A whereN is the dimension oft, R®® = RGD)(x x) is the
auto-correlation matrix fox, 1 is the N-vector with all the
Temporal moments elements equal to one, ahds the identity matrix. The vari-

ancen? follows an inverse-scaleg? distribution x3, with
According to Li et al. (2005) and Zhu and Yeh (2006), the (N—1) degrees of freedom and a scale parameter equal to
k-th-order temporal moment,(x) for a pressure build-up  $2;

curves(x,t) is defined b
o) g p(n2|/\h,kv,v2,u) ~X§C|(N—1, 52>. (B3)

o0 A
mg(x) :/ tks(x,t)dt. (A1) The mean follows a normal distribution with megrand
0 variancenzvg:

In thls stuply, we use only'the zerp—order 'momer@(x) for p(ﬂlnz,kh,ku,vz,u) N N(g’nzvé)_ (B4)
the inversion to characterize thefield, which can exclude

uncertainty in the storage coefficient and avoid an alias effeciVe multiply Egs. (B1), (B3), (B4), and the prior distribution
of the storage-coefficient uncertainty to tiiefield. Under  to determinep(B, %, An, Ay, v?|u) in Eq. (6).
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