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Abstract Quantifying the interannual variability of hydrologic variables (such as annual flow volumes,
and solute or sediment loads) is a central challenge in hydrologic modeling. Annual or seasonal
hydrologic variables are themselves the integral of instantaneous variations and can be well approximated
as an aggregate sum of the daily variable. Process-based, probabilistic techniques are available to describe
the stochastic structure of daily flow, yet estimating interannual variations in the corresponding aggregated
variable requires consideration of the autocorrelation structure of the flow time series. Here we present a
method based on a probabilistic streamflow description to obtain the interannual variability of flow-derived
variables. The results provide insight into the mechanistic genesis of interannual variability of hydrologic
processes. Such clarification can assist in the characterization of ecosystem risk and uncertainty in water
resources management. We demonstrate two applications, one quantifying seasonal flow variability and the
other quantifying net suspended sediment export.

Plain Language Summary We present a method to predict interannual/interseasonal streamflow
variation. Predicting such variation is a long-standing target of hydrological modeling, yet remains
challenging to achieve using existing methods, which are generally derived from purely meteorological
data. Here we develop an alternative approach that accounts for the random occurrence of rainfall and
the process by which rainfall is transformed (via infiltration into the soil and eventual drainage through
a shallow groundwater system) into stream discharge. By summing over these variations, the method
addresses a major source of interannual variability, arising from the stochasticity of precipitation.
The proposed technique can also be generalized to predict interannual variability of physical processes that
depend on flow (e.g., suspended sediment export), meaning that the method has broad applicability across
the geosciences.

1. Introduction

Skillful prediction of the interannual variability of hydrologic processes is valuable to inform flow forecasts
[Farmer et al., 2003; Bárdossy, 2007], to manage the design of infrastructure (e.g., reservoir sizing), and to char-
acterize and protect stream ecosystem function [Löf and Hardison, 1966; Poff et al., 1997; Vogel and Wilson,
1996; Dettinger and Diaz, 2000; Biggs et al., 2005; Monk et al., 2008; Blöschl, 2013]. Variability in annual
runoff determines the uncertainty associated with water availability in given river systems [McMahon et al.,
2013], with implications for hydropower production [Castellarin et al., 2004], drinking water systems [Löf and
Hardison, 1966], ecosystem health [Poff et al., 1997], landscape evolution [Rossi et al., 2016], and environmen-
tal quality in receiving waters [Anderson et al., 2005; Ahearn et al., 2005; Morehead et al., 2003]. Understanding
the connection between annual (or seasonal) flow variations and the statistical properties of climate as medi-
ated by the physical properties of a catchment remains a fundamental and incompletely realized goal of
hydrological prediction [McMahon et al., 2007].

Although stream discharge varies continuously in time, most discharge records report daily mean flows, and
a wide variety of hydrologic models focus on the prediction of daily flow values. For example, simple mod-
eling approaches from stochastic hydrology [Botter et al., 2007; Müller et al., 2014; Basso et al., 2015, 2016]
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can often skillfully predict daily discharge variability in natural catchments using a constrained set of predic-
tors derived from rainfall climatology, storage capacity of the unsaturated zone, vegetation water use, and
the drainage characteristics of the catchment groundwater system. Subsequent extensions of this framework
have been used to study run-of-river hydropower generation [Müller et al., 2016; Lazzaro and Botter, 2015],
flood risk assessment [Basso et al., 2016], river macroinvertebrate habitat extent [Ceola et al., 2014], and ripar-
ian vegetation extent [Doulatyari et al., 2014], among other applications across the geological and ecological
sciences. With such a model for daily flows, climatic and catchment-scale properties could be linked to annual
measures of flow variability by computing seasonal or annual sums of the (predicted) daily flow variable. For
instance, annual flow volumes (QAF (L)) can be computed as

QAF =
T∑

i=1

QiΔt, (1)

where Qi (L T−1) is the value of daily mean discharge on day i, T is the number of days over which the sum is
taken, and Δt = 1 day. When annual or seasonal properties of flow-derived variables (X[∗], unspecified units)
are of interest, equation (1) can be generalized as

X =
T∑

t=1

f
[

Qi

]
Δt. (2)

The function f [ ∗ ⋅ T−1] describes the transformation from flow to the variable of interest, at the daily time
scale. For example, suspended river sediment discharge mass flux, L [MT−1] (or concentration, which can be
converted to a mass flux by multiplication with Q), is commonly described through the sediment rating curve
as a power law function of daily flow, L = f (Q) = 𝛽Q𝛿 [Runkel et al., 2004]. In this case, seasonal or annual
suspended sediment export (Lnet) can be derived from the sum of the transformed daily flow variable as

Lnet =
T∑

t=1

𝛽Q𝛿

i Δt. (3)

Variability of such seasonal or annual measures of flow (or a flow-derived process) can be parsimoniously
described by the measure’s standard deviation (𝜎X ):

𝜎X =
√

Var[X] =

√√√√Var

[
T∑

i=1

f
[

Qi

]]
. (4)

Reliable estimates of 𝜎X are often difficult to make because extensive empirical records are required to
ensure representative sampling of interannual variability in time. Such lengthy records of flow are available
in relatively few basins worldwide and fewer still in the case of water quality data such as suspended sedi-
ment [Grabs, 2009; Sene and Farquharson, 1998]. If, however, interannual variation arises primarily from the
year-to-year realization of stationary daily climate statistics (e.g., mean rainfall depth), it would be appealing
to estimate seasonal or interannual variations from the known probability distribution of daily streamflows.
Upscaling daily variability to seasonal or greater time scales in natural basins, however, requires accounting for
the autocorrelated structure of the underlying daily flow generation process. For a stationary time series that
exhibits autocorrelation, calculating the standard deviation of the aggregated variable requires estimating
the full autocorrelation function for lags from 1 to T − 1, where T is the length of the summation period:

𝜎X =

√√√√Var

[
T∑

i=1

f
[

Qi

]]
=

√√√√ T∑
i=1

T∑
j=1

Cov
(

f
[

Qi

]
, f
[

Qj

])
=

√√√√ T∑
i=1

T∑
j=1

𝜎2
Q𝜌

(
f
[

Qi

]
, f
[

Qj

])
. (5)

Here𝜎2
Q is the variance of the (assumed stationary) daily flow random variable, and Cov and 𝜌 are its covariance

and autocorrelation functions, respectively. Failing to properly account for the serially correlated nature of the
hydrograph would underestimate the spread of the aggregated distribution (𝜎X ) because all the j ≠ i terms
of the summation in equation (5) would be omitted.

The aim of this study is to use a predicted probability distribution of daily flow [Botter et al., 2007; Basso et al.,
2015, 2016; Müller et al., 2014] to derive the covariance function of the daily discharge or discharge-derived
variable, and thus the standard deviation of the associated integrated annual or seasonal variable. A similar
framework was proposed by Zanardo et al. [2012] to examine interannual variations of the Budyko evaporation
index as a function of the interannual rainfall variability. However, Zanardo et al. [2012] did not address serial
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correlation of the hydrograph, thus limiting generality of the analysis. Additionally, because many families
of probability distributions are uniquely defined by their mean and standard deviation, we also demon-
strate how “moment matching” can be used to obtain approximate probability distributions of seasonal and
annual variables [e.g., Jiang et al., 2017]. These distributions could provide relevant management-oriented
information, such as estimates of annual flow return intervals. In particular, we focus on the application of
the two-parameter gamma distribution, which has been used to successfully represent distributions of sums
of environmental variables [Kotz and Neumann, 1963], including annual and seasonal total flow volumes
[e.g., McMahon et al., 2007; Yu et al., 2015]. Two case studies demonstrate the utility of the method for
diverse applications: Case Study 1 examines interannual variation of seasonal flow totals for seven watersheds
(and multiple seasons) across the continental United States and Puerto Rico, and Case Study 2 uses the model
to predict net seasonal export of suspended sediment in four U.S. rivers.

2. Methods
2.1. Daily Streamflow Model
Catchment discharge behavior is specified according to the stochastic streamflow model developed by
Botter et al. [2007]. This approach assumes that a watershed can be modeled as a linear reservoir with
area-normalized discharge Q [L∕T] and response time scale 1∕k [T], resulting in an exponential catchment
recession governed by dQ∕dt = −kQ. Botter et al. [2007] model the sequence of recharge events that gen-
erate streamflow as a marked Poisson process with mean interarrival time 1∕𝜆 [T], resulting in exponentially
distributed discharge increments with mean 1∕𝛾Q [L∕T]. The timing and volume of recharge/discharge events
depend upon rainfall climatology, the storage capacity of the unsaturated zone, and vegetation water use.
Accordingly, the parameters𝜆 and 𝛾Q are determined from catchment rainfall features, catchment soil textural
properties, rooting depth, and vegetation water demand [Milly, 1993; Porporato et al., 2004; Botter et al., 2007].
It is assumed that these parameters can be taken as constant for the seasonal or annual period of interest.
With this set of assumptions, Botter et al. [2007] show that the steady state daily catchment discharge follows
a two-parameter gamma distribution with a probability density function given by

pQ(q) =
𝛾m

Q

Γ(m)
qm−1 exp(−𝛾Qq), (6)

with m = 𝜆∕k.

2.2. Standard Deviation of a Sum
In general, the covariance function from equation (5) can be computed as

Cov
(

f
[

Qi

]
, f
[

Qj

])
= ∫

∞

0 ∫
∞

0

(
f (qi) − 𝜇f

) (
f (qj) − 𝜇f

)
pQi ,Qj

(
qi, qj

)
dqidqj, (7)

where pQi ,Qj
(qi, qj) is the joint probability density function for discharge on days i and j and where 𝜇f is the

daily mean of f (Q):

𝜇f = ∫
∞

0
f (q)pQ(q)dq, (8)

with pQ given by equation (6).

The joint distribution pQi ,Qj
(qi, qj) can be decomposed into the product of a conditional distribution and the

marginal distribution: pQi ,Qj

(
qi, qj

)
= pQi|Qj

(
qi|qj

)
pQ(qj), where again pQ comes from equation (6). An analyt-

ical expression for pQi|Qj
(qi, qj) was obtained by Viola et al. [2008] (for the case of soil moisture) using the same

assumptions about reservoir linearity and rainfall statistics as Botter et al. [2007]:

pQi|Qj

(
qi|qj

)
= e−𝜆𝜏𝛿

(
qi − qje

−k𝜏
)
+ e−𝜆𝜏−𝛾(qi−qj e−k𝜏) 𝜆𝛾

k
⋅
(

ek𝜏 − 1
)

1F1

[
1 − 𝜆∕k, 2, 𝛾

(
qi − qje

−k𝜏
) (

1 − ek𝜏
)]

,

(9)

where i ≥ j, 𝜏 = i− j, 𝛿(∗) is the Dirac delta function, and 1F1 [∗, ∗, ∗] is the Kummer confluent hypergeometric
function [Abramowitz and Stegun, 1965]. Equation (9) is a mixed type distribution, including both a discrete
atom of probability at qi = qje

−k𝜏 and a continuous distribution on the interval qi ∈ [qje
−k𝜏 ,∞). The atom

represents the probability that a recharge event has not occurred between day i and day j (with j − i = 𝜏),
which happens with probability e−𝜆𝜏 , according to the properties of the Poisson recharge process. Conversely,
the continuous portion of the distribution represents the possible values of Qi if one or more recharge events
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occur between i and j, which happens with probability 1 − e−𝜆𝜏 . It is known (and we ourselves have found)
that the hypergeometric function in equation (9) is numerically unstable for large values of 𝜏 [Muller, 2001].
The instability often leads to divergence of the covariance function between daily flows, making it difficult to
confidently predict the standard deviation of the aggregated variable. We therefore approximate the contin-
uous portion of pQi|Qj

(qi, qj) with a more stable, shifted gamma distribution that is parameterized to match
the mean (M) and variance (V) of equation (9). This shifted gamma distribution takes the form

p̃Qi|Qj

(
qi|qj

)
= e−𝜆𝜏𝛿

(
qi − qje

−k𝜏
)
+

(
1 − e−𝜆𝜏(

qi − qje−k𝜏
)1−a

)
b−a

Γ(a)
exp

(
−

qi − qje
−k𝜏

b

)
. (10)

The parameters of this gamma distribution (a and b) will be determined from M and V , which can be obtained
from the moment generating function (where u is the Laplace variable) of equation (9), also presented in Viola
et al. [2008]:

p∗
Qi|Qj

(u, 𝜏, qj) = eqj ue−k𝜏
(

ue−k𝜏 + 𝛾

𝛾 + u

) 𝜆

k

. (11)

The properties of the moment generating function give M =
dp∗

Qi |Qj

du

||||u=0
, and V =

d2p∗
Qi |Qj

du2

|||||u=0

. We com-

pute expressions for the mean and variance of the approximate distribution, set them equal to the mean (M)
and variance (V) of the exact distribution, and solve for the parameters of the shifted gamma distribution
(a and b); the solution is

a = −
(

M − qje
−k𝜏

)2

e−𝜆𝜏
(

M − qje−k𝜏
)2 + V(e−𝜆𝜏 − 1)

(12)

b =
e𝜆𝜏

(
M − qje

−k𝜏
)

e−𝜆𝜏 − 1
− V

qje−k𝜏 − M
. (13)

In the supporting information (Figure S4), we present an analysis that demonstrates that the approxima-
tion is extremely accurate with error that is nearly immeasurable across a wide range of lags (𝜏) and model
parameterizations. With this approximation, the covariance function is computed by substituting p̃Qi|Qj

into
equation (7):

Cov
(

f
[

Qi

]
, f
[

Qj

])
= ∫

∞

0 ∫
∞

0

(
f (qi) − 𝜇f

) (
f (qj) − 𝜇f

)
p̃Qi|Qj

(
qi|qj

)
pQ(qj)dqidqj. (14)

We note that while we use equation (14) to compute the covariance, a mathematically equivalent analyti-
cal expression for the covariance is already available for the special case of f (Q) = Q used in Case Study 1
[Muneepeerakul et al., 2010]:

Cov
(

Qi,Qj

)
= 𝜎2

Qe−|i−j|, (15)

where 𝜎Q is the standard deviation of the daily flow variable. Nevertheless, such an expression has not been
derived generally for nonlinear f , as required here.

Finally, we determine 𝜎X by substituting equation (14) into equation (5), where the double sum in equation (5)
is obtained by numerical integration of equation (14) for all lags |i − j| ∈ [1, T − 1] with i, j ∈ [1, T] and use 𝜎X

and 𝜇X to moment match and approximate pX (x).

To elucidate the details of the above methods, we created a well-commented Python (https://www.python.
org/) code in a Jupyter Notebook (http://jupyter.org/) that computes the standard deviation for any power
law function of streamflow, f (Q) (defined by a user-specified 𝛽 and 𝛿), given the model parameters 𝛾Q, 𝜆, k,
and T . This notebook can be found at https://github.com/daviddralle/sdSum.

2.3. Case Studies
Two case studies are considered: predicting the standard deviation and PDF of seasonal flow totals and pre-
dicting the standard deviation and PDF of seasonal sediment export. Both case studies require specification
of a summation duration (T) and the three parameters of the underlying model for stream discharge [Botter
et al., 2007]: the streamflow recession constant (k), the inverse of the mean increment in discharge during
runoff generation events (𝛾Q), and the frequency of runoff generation events (𝜆). While 𝜆 and 𝛾Q can be
found using information on catchment soil, vegetation, and climatic features [Botter et al., 2007], we examine
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translation of the daily model to seasonal and annual time scales and therefore estimate parameters of the
daily model by extracting values of 𝜆 and 𝛾Q from the hydrograph. The mean interarrival time of runoff gener-
ation events (𝜆) is calculated by identifying the number of hydrograph peaks (N) over all summation periods
and dividing this by the total number of days over which all sums are computed (P days = n years of data
× T days per year). The recession constant (k) is determined by first restricting our attention to hydrograph
peaks during the summation period and selecting only those for which runoff both decreases (negative first
derivative) and is convex (positive second derivative or concave up) for at least 4 days following the recession
peak [Dralle et al., 2017]. Recession constants are computed using nonlinear least squares regression to fit the
model Qi = Q0e−kt to each recession, and the median k of all extracted recessions is used in the model. Finally,
the mean discharge increment is calculated by first computing the long-term mean of daily discharge during
the summation periods (𝜇Q) and noting that 𝜇Q = 𝜆∕(k𝛾Q) =⇒ 𝛾Q = 𝜆∕(𝜇Qk). We use this relationship, along
with the previously computed values of k and 𝜆, to estimate 𝛾Q.
2.3.1. Case Study 1: Seasonal Flow Totals
For a given season length in days (T), the seasonal flow can be straightforwardly expressed as

Qseason =
T∑

i=1

QiΔt, (16)

where Qi is the flow value (in units of cm/d) on day i. The mean of the distribution of Qseason is obtained as
𝜇Qseason

= T ⋅𝜇Q, where𝜇Q is the daily mean flow over all summation periods, and the standard deviation𝜎Qseason

can be found using equation (5), with f (Q) = Q. Finally, we generate an approximate gamma probability
distribution pQseason

for the random variable Qseason with shape (c) and rate (d) parameters that are consistent
with 𝜇Qseason

and 𝜎2
Qseason

, or

c = 𝜇2
Qseason

∕𝜎2
Qseason

(17)

d = 𝜇Qseason
∕𝜎2

Qseason
(18)

pQseason
(q) = dc

Γ(c)
qc−1e−dq. (19)

In Figure S1 in the supporting information, we demonstrate that the choice of a gamma distribution well
represents actual distributions of flow sums.

To assess goodness of fit of the distributions, we use the Nash-Sutcliffe efficiency applied to the percentiles of
the predicted and empirical probability distributions of Qseason [e.g., Castellarin et al., 2004; Müller et al., 2014]:

NSE = 1 −
∑99

i=1

(
Qi

m − Qi
o

)2

∑99
i=1

(
Qi

o − Qo

)2
, (20)

where Qi
m is the model predicted ith percentile of Qseason and Qi

o the corresponding empirical percentile. The
NSE achieves a value of 1 for perfect agreement between the model and observation.
2.3.2. Case Study 2: Sediment Export
The total sediment export Lseason (kg) over a season of length T (days) can be approximated as the sum of daily
observations Li (kg/d):

Lseason =
T∑

i=1

LiΔt. (21)

To calculate the standard deviation of Lseason, one need not consider the steady state distribution or covariance
of Li directly. Instead, Li can be formulated as a derived random variable of Qi whose covariance is governed by
equation (7), once a suitable parameterization of the sediment rating curve Li = 𝛽Q𝛿

i has been established. We
fit the rating curve for each site using nonlinear least squares regression on the (Qi, Li) pairs observed over the
period of record for which both Qi and Li are available. The mean of the distribution of Lseason is then defined
as T ⋅ 𝜇L, where 𝜇L is the mean of the daily sediment export distribution. This mean 𝜇L and the associated
variance of the seasonal variable 𝜎2

Lseason
can be computed using f (Q) = 𝛽Q𝛿 in equation (8) and equation (14),

respectively. We again use 𝜇Lseason
and 𝜎Lseason

to determine a moment consistent gamma distribution for the
probability density function of Lseason (pLseason

(l)) and measure model performance using the Nash-Sutcliffe
efficiency.
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3. Results and Discussion
3.1. Case Study 1: Seasonal Flow Totals
In Figures 1a and 1b, we plot the empirical frequency histograms for total winter season flows on the Smith
River (December through February; T = 92 days), and total spring flows on the Rivanna River (March–May;
T = 93 days). The Smith River is highly seasonal, with most annual precipitation (annual rainfall average
approximately equal to 2 m) falling during a 6 month wet season spanning from November to April. The
Rivanna River has a fairly persistent rainfall regime, with little seasonal variation in monthly rainfall totals,
and an annual mean total rainfall of approximately 1.2 m. The number of bins for each histogram equals the
rounded square root of the number of years in the flow record [Montgomery and Runger, 2010]. On top of
these histograms, we plot the gamma probability distribution of seasonal flows for two cases: (1) where daily
flows are independent and identically (gamma) distributed according to equation (6) (red hashed line); and (2)
where daily flows are identically distributed according to equation (6) and autocorrelated in time (green solid
line). In the latter case, the flow correlation between days is accounted for by the methods from section 2.2.
Differences between the independent and autocorrelated cases are expected (and included) for reference,
but the key result is the good match between empirical histogram and the analytical prediction of the solid
curve. Both flow plots in Figure 1 demonstrate that accounting for serial correlation is necessary to correctly
estimate the variability of seasonal sums. The importance of the contribution of hydrograph autocorrelation
is a function of both the autocorrelation time scale of the hydrograph and the duration of the period over
which the sum is computed. In particular, we find that the error increases sharply as the summation period
becomes longer, and, for a given summation period, the error increases with the autocorrelation length. This
sensitivity is explored in Figure S2 in the supporting information. Results for other seasons are similar to those
plotted in Figure 1. Table 1 catalogues NSE of model performance for six other USGS study watersheds.

Error patterns can be attributed to the simplified model formulation. For example, standard deviations are sys-
tematically underestimated, likely due to interannual variations in climatic model parameters (𝛾Q,𝜆), which are
here assumed constant. Appropriate representations of year-to-year stochasticity of 𝜆 and 𝛾Q [e.g., Porporato
et al., 2006] could be integrated into the model to account for this variability, analogously to the stochastic
soil moisture model of Feng et al. [2017]. Still, generally good model performance suggests that interannual
variations in seasonal flow totals are largely explained by the statistical properties of daily flows. That is, most
of the observed variability does not stem from interannual variations in climate statistics but instead from the
manner in which a particular set of weather statistics are realized and propagated through a catchment.

Model performance is lowest during the summer period in eastern U.S. watersheds. We find that almost
universally, these watersheds exhibit strong downward flow trends each summer (followed by a strongly non-
stationary upward trend in the fall), despite relatively constant rainfall patterns. We suspect that this is due to
a combination of increasing transpiration over the course of the summer, or increasing interception in decid-
uous forests, both of which would limit volumes of groundwater recharge and thus streamflows [Zimmer and
McGlynn, 2017]. Such forms of nonstationarity violate the assumptions of the underlying model [Botter et al.,
2007]. This does not represent a failure of the method presented here for accounting for autocorrelation but
rather an important limitation to the applicability of existing probabilistic models for the daily flow PDF. For
illustration, we present summer flows for two catchments (Watauga River and Rivanna River) but omit the
fall and summer seasons in other study watersheds. We examine sensitivity of seasonal flow variability to
intraseasonal transpiration nonstationarity in Figure S3 in the supporting information.

Overall, model performance is comparable to other methods for examining interannual flow variations. Peel
et al. [2000] calibrated a seven-parameter hydrologic model (SIMHYD) to predict monthly flow variations in
331 Australian catchments. Their model is not directly comparable to the present study (we predict by season,
instead of month; Peel et al. [2000] examine the coefficient of variation, not the standard deviation of flows).
Nevertheless, as a coarse comparison, 80% of the validation data sets from Peel et al. [2000] exhibit percent
error of less than 20%, compared to 22% in this study (ignoring the summer season, which fails because model
stationarity assumptions are violated). Simpler statistical methods are also available to predict annual flow
variability. For example, McMahon et al. [2011] used 10 variants of a meteorologically based statistical tech-
nique to predict the standard deviation of annual flows, with model R2 values (𝜎predicted versus 𝜎actual) ranging
from 0.52 to 0.58. In comparison, our model achieves an R2 equal to 0.94 (see Figure 2), although we note that
these bulk measures of performance should be interpreted with caution, given the relatively small data set
used in the present study.

DRALLE ET AL. INTERANNUAL HYDROLOGIC VARIABILITY 6
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Figure 1. Distributions of seasonal flows for (a) Rivanna River (spring: March–May) and (b) Smith River (winter season:
December–February), and seasonal net suspended sediment export for (c) Tygart’s Creek (winter: December–February)
and (d) Hickahala Creek (spring: March–May). The legend indicates a green (red) line for the “moment consistent”
gamma distribution approximation with (without) accounting for correlation in summing.

Table 1. Flow and Sediment Performance

USGS Gage ID Name Season Theoretical (Empirical) 𝜎 NSE CVQ

Flow Performance (𝜎 (cm))

03491000 Big Creek, Tennessee Winter 6.95 (8.13) 0.95 1.55

03491000 Big Creek, Tennessee Spring 6.95 (8.13) 0.95 1.06

11475560 Elder Creek, California Spring 20.52 (23.92) 0.97 1.29

11475560 Elder Creek, California Winter 34.45 (44.26) 0.92 1.5

50138000 Rio Guanajibo, Puerto Rico Fall 10.53 (15.85) 0.90 1.31

07277700 Hickahala Creek, Mississippi Spring 6.23 (7.93) 0.96 2.51

07277700 Hickahala Creek, Mississippi Winter 6.87 (8.81) 0.94 2.27

02034000 Rivanna River, Virginia Spring 4.78 (5.93) 0.95 1.18

02034000 Rivanna River, Virginia Summer 2.04 (4.73) 0.67 1.53

02034000 Rivanna River, Virginia Winter 4.12 (5.38) 0.94 1.26

11532500 Smith River, California Winter 44.38 (44.85) 0.97 1.35

11532500 Smith River, California Spring 25.45 (24.34) 0.96 1.02

03479000 Watauga River, North Carolina Summer 3.82 (6.86) 0.85 1.09

03479000 Watauga River, North Carolina Spring 8.40 (7.97) 0.98 1.06

03479000 Watauga River, North Carolina Winter 7.57 (7.08) 0.98 1.20

Sediment Performance (𝜎 (kg))

07277700 Hickahala Creek, Mississippi Spring 43,594.97 (43,098.30) 0.90 2.51

07277700 Hickahala Creek, Mississippi Winter 55,944.55 (76,173.64) 0.87 2.27

01666400 Rappahannock River, Virginia Spring 24,322.43 (24,697.13) 0.51 1.06

01666400 Rappahannock River, Virginia Winter 18,710.69 (23,482.05) −0.07 1.20

03383000 Tradewater River, Kentucky Spring 4,964.76 (4,041.28) 0.85 1.37

03383000 Tradewater River, Kentucky Winter 3,812.57 (2,664.57) 0.44 1.70

03217000 Tygart’s Creek, Kentucky Spring 21,083.86 (19,066.67) 0.72 1.70

03217000 Tygart’s Creek, Kentucky Winter 17,809.00 (14,332.30) 0.28 1.85
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Figure 2. Coefficients of determination for model-predicted standard deviations versus actual standard deviations,
for both seasonal flow totals and seasonal net suspended sediment export. Dashed lines indicate a factor of 2
error envelope.

3.2. Case Study 2: Sediment Export
We plot suspended sediment results for Hickahala Creek and Tygart’s Creek (both of which exhibit fairly
persistent rainfall regimes) in Figures 1c and 1d. The plots are generated analogously to Figures 1a and 1b
and demonstrate that complex sums of functions of flow are also amenable to the presented theory.
Relatively lower NSEs (Figure 1) for sediment PDFs may result from shorter data records or inadequacy of
gamma probability distributions for this application; predicted versus actual standard deviations (Figure 2)
are fairly accurate, with an R2 value equal to 0.89.

Other error results from the limited usefulness of the sediment rating curve approach in some basins, where
hysteretic or nonfunction sediment-flow relations are common [Seeger et al., 2004]. Using the sediment rat-
ing curve to “project” sediment records with the flow variable (that is, transforming daily flows with the rating
curve function as an estimate for daily sediment fluxes) significantly improves seasonal sediment model per-
formance, with, for example, the winter sediment Rappahannock Creek NSE rising from −0.07 to 0.91. This
demonstrates that the sediment rating curve is likely the dominant source of error in Table 1. Alternative rat-
ing curve models, leading to more complex functions of flow, f (Q) [see Runkel et al., 2004], could be applied
without altering our approach.

More generally, the approach could be straightforwardly extended to other applications. Simple functions, f ,
could be used to specify water abstraction or irrigation strategies as a function of daily flow; stochastic sums,
in this instance, would be necessary to examine the variability of total water withdrawals for a given strategy.
This suggests useful applications of the model for alternative sustainable management strategies in regions
where poorly planned surface water withdrawals are detrimental to stream ecosystems [Bauer et al., 2015].
Similar functions of daily flow have also been used to model power output of run-of-river hydropower facilities
[Basso and Botter, 2012]. Whereas hydrograph autocorrelation limited Basso and Botter [2012] to a lumped,
multiyear analysis of energy output, the methods presented here would make it possible to examine annual
or seasonal variability of total energy output potential for a given season.

3.3. Model Limitations
As previously mentioned, interannual variations of the climatic parameters 𝛾Q and 𝜆, or within-season nonsta-
tionarity (due to increasing ET, for example) are not presently accounted for by the model, which nevertheless
performs well given that model parameters are assumed constant over 3 month periods. Other more com-
plex forms of interannual variability or covariation between forcing variables, such as observed covariation
between ET and annual rainfall totals [McMahon et al., 2011], may play an important role in determining inter-
annual flow variations, which has not been examined here. Nevertheless, the relative success of the model
suggests that the majority of interannual variation in the presented case studies results from the year-to-year
realization of the assumed stationary sequence of recharge pulses, as determined by the (constant) mean
interarrival time between recharge events (1∕𝜆) and the mean flow increment during recharge events (1∕𝛾Q).

Other extensions or improvements of the model might help to alleviate error. For example, some error may
also derive from the simplified linear reservoir used to model stream discharge. Botter et al. [2009] extend the
framework to include nonlinear reservoirs, and Botter [2010] examine stochasticity in the rate of recession
(k) itself, but we are unaware of any simple procedure for computing the covariance function in these cases.
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Although we present a relatively straightforward method for computing the standard deviation of aggre-
gated flow variables, the technique must be implemented numerically for any nonlinear function f . Analytical
expressions for the covariance for nonlinear f would greatly increase speed of computation and facilitate
interpretation of model output.

4. Conclusion

We developed a process-oriented method to predict variability of catchment discharge and discharge-derived
variables at seasonal and annual time scales. Results demonstrate that the statistics and covariance struc-
ture of daily flows are the primary drivers of hydrologic variability on longer time scales. By accounting for
the serially correlated nature of the flow time series, the underlying flow model is easily extended to vari-
ables that functionally depend on daily flow values. We demonstrated this linkage using the example of a
power law model for suspended sediment export and suggest other applications relating to water resources
management. Predictive fidelity of the model is on par with or better than other more highly parameterized
process models and statistical methods, providing a new, powerful tool for predicting the interannual and
interseasonal variability of aggregated hydrologic variables.
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