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[1] The bulk velocity Ub in streams is conventionally estimated from Manning’s equation,
but difficulties remain in parameterizing the roughness coefficient n when the streambed is
covered with vegetation. A two-layer velocity model is proposed to determine n and Ub for
the submerged vegetation case. The modeled n is derived as a function of flow and
vegetation properties that can be inferred from remote sensing platforms, such as canopy
height, leaf area density, and flow depth. The main novelty in the proposed formulation is
that the shear stress is related to the mean velocity profile by considering both ejective and
sweeping motions by dominant eddies. The proposed model is tested against a large data set
from the literature and is shown to perform well, particularly for rigid vegetation. Poorer
model performance for flexible vegetation can be partially attributed to the shape of the
assumed mean velocity profile. The roughness coefficient n is found to be robust to
variations in the average spacing between canopy elements, allowing the model to be
applied to heterogeneous canopies.
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1. Introduction
[2] Methods to predict the bulk or area-averaged mean

velocity Ub in streams commonly employ Manning’s equa-
tion, which links Ub to channel slope S and hydraulic radius
R through a single roughness coefficient n. In practice,
values of n for a specific surface cover are selected using
look-up tables [Chow, 1959]. Look-up table methods can
be problematic for determining Ub in vegetated channels
because vegetation characteristics substantially influence
the mean velocity profile uðzÞ, where z is the height from
the channel bed and the overbar denotes Reynolds averag-
ing. The vegetation structural properties on which uðzÞ
depends vary in time and are not always known. However,
remote sensing technologies do permit widespread charac-
terization of vegetation attributes and flow characteristics.
Interferometric synthetic aperture radar (InSAR) measure-
ments allow for determination of variations in water sur-
face elevation [Alsdorf et al., 2007]. The future Surface
Water and Ocean Topography (SWOT) satellite mission
(recently approved as a NASA Decadal Survey Mission)
will use InSAR and other instruments to provide estimates
of water surface elevations with an accuracy on the scale of
centimeters [Durand et al., 2010]. Lidar methods can be
used to characterize vegetation height (hc) and leaf area
density (a) for use as inputs to operational flood routing
models [Antonarakis et al., 2010; Forzieri et al., 2010].

[3] Clearly, theoretical models to estimate Ub on the
basis of these vegetation and water elevation properties
can be decisive in advancing flood routing predictions.
Although several such models have been proposed [e.g.,
Wu et al., 1999; Musleh and Cruise, 2006; Wilson, 2007;
Yang and Choi, 2010], these models have not generally
taken advantage of what is known about the characteristics
of the turbulent eddies that dominate momentum transport
in vegetated systems. A model for Ub and n in channels
with submerged vegetation is proposed here by extending
the recent theoretical treatment of Gioia and Bombardelli
[2002]. In this paper, a phenomenological approach is used
to describe the momentum transfer at the canopy top on the
basis of characterizing the dominant eddies, thereby closing
the channel-wide momentum budget. In doing so, the
effects of ejections and sweeps on momentum transfer
associated with the eddies are simultaneously accounted
for. Ejections occur when u0 < 0 and w0 > 0 and sweeps
occur when u0 > 0 and w0 < 0 [Robinson, 1981], where
u ¼ uþ u0 and w ¼ wþ w0 are the instantaneous stream-
wise and vertical velocities and primed quantities are
excursions from the Reynolds-averaged quantities (indi-
cated by overbar throughout).

[4] The proposed model is tested against (1) a large data
set of measured values of n and Ub from the literature and
(2) an existing two-layer model of flow in vegetation chan-
nels with regularly spaced rod elements [Huthoff et al.,
2007]. The principal differences between the model pro-
posed here and that of Huthoff et al. are that the proposed
model accounts for the momentum contributions generated
by ejections and explicitly includes constraints imposed on
the eddy sizes on the basis of their ability to penetrate the
canopy, both features excluded in the model of Huthoff
et al. [2007].
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2. Model Description
[5] In section 2 the model for n and Ub is derived for

the submerged vegetation case. The phenomenological
approach introduced by Gioia and Bombardelli [2002] for
cases where the channel roughness height is small (referred
to as the rough boundary layer formulation) is first sum-
marized to illustrate the origins of the model structure. A
model aquatic canopy is then introduced, and its properties
are used to adapt the rough boundary layer formulation to a
channel covered with vegetation. The entire derivation for
the vegetated channel model is shown.

2.1. The Rough Boundary Layer Formulation

[6] Gioia and Bombardelli [2002] used a phenomeno-
logical approach to derive the turbulent shear stress (�) at
the channel bed when the channel roughness height is small
relative to hw. Gioia and Chakraborty [2006] and Gioia
et al. [2010] also used a similar phenomenological model
to quantify how variations in friction factor and mean
velocity profile are impacted by variations in Reynolds
number in pipe flow. In this approach, the roughness ele-
ments were assumed to have a length scale h0. The � was
assumed to be dominated by eddies that straddle the coves
between successive roughness elements at the wall surface.
The projection of this eddy morphology is a sphere whose
radius is h0 centered on the plane tangent to the roughness
elements and parallel to the bottom. The dominant eddy
shape and channel system are illustrated in Figure 1. The �
from this eddy depends on the velocities tangent (vt) and
normal (vn) to the surface,

� � �wjvtvn j; (1)

where �w is the density of water. The vt depends on the dif-
ference between the velocity at the top of the eddy, which

scales with Ub (in a single-layer model) and the velocity at
the bottom of the eddy, which is assumed to be negligible
relative to Ub because of the no-slip boundary condition.
Thus, vt � ðUb � 0Þ. The vn is the characteristic velocity
bounding the eddy of size h0 and normal to the
surface. The magnitude of this velocity is characterized by

the structure function vnðh0Þ ¼
�
½w0ðxþ h0Þ � w0ðxÞ�2

�1=2
,

such that vn ¼ ð�wðh0ÞÞ2
1=2

. For an eddy of radius ho,
Gioia and Bombardelli [2002] used the Kolmogorov four-
fifths scaling law for the inertial subrange to estimate
vnðh0Þ, which is given as [e.g., Kolmogorov, 1941; Tennekes
and Lumley, 1972; Frisch, 1995]

v3
n ¼ ð�wÞ3 ¼ � 4

5
�h0; (2)

where � is the rate of dissipation of turbulent kinetic energy
(TKE). This four-fifths scaling law is exact for locally
homogeneous and isotropic turbulence, which may not
characterize the dominant eddy here. If the Kolmogorov
four-fifths scaling law is assumed to hold without any fur-
ther modifications arising from TKE production or viscous
dissipation, then equation (2) holds even for eddies extend-
ing throughout hw. Such eddies have a radius commensurate
with the hydraulic radius R (equal to hwB

Bþ2hw
for rectangular

channels, where B is the channel width). The structure func-
tion of those eddies that scale with R at z ¼ h0 can be
written as

ð�wðRÞÞ2 ¼ 2�2ð1� �ðRÞÞ; (3)

where � is the variance of the turbulent velocity, and � is
its autocorrelation function. If the integral length scale of
the turbulent velocity is smaller than hw, then �ðRÞ ’ 0. As

Figure 1. Schematic representation of the canopy and dominant eddy configuration. (left) The domi-
nant eddies for the rough boundary layer formulation, which straddle the space between the roughness
elements of radius h0. The tangential velocity scale vt associated with these eddies is Ub since there is no
finite velocity at the bottom of the eddy. (right) A model for dominant eddies shown for aquatic
vegetation. In this case, both ejections (associated with U ¼ Uc, the velocity in the canopy) and sweeps
(associated with U ¼ Uc þ�U , the velocity above the canopy) contribute a finite velocity to vt.
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a result, ð�wðRÞÞ2 � 2�2, a key assumption of Gioia and
Bombardelli [2002]. Since the variance of the velocity

scales as U2
b , ð�wðRÞÞ2 � U2

b . From Kolmogorov’s theory,
then

ð�wðRÞÞ2 � U2
b � �2=3R2=3; (4)

and for the third-order structure function,

ð�wðRÞÞ3 � U3
b � �3=3R3=3

� U3
b � �R:

(5)

Combining equations (2) and (5) allows the estimation of
vn and �

�w
as

vn � Ub
h0

R

� �1=3

: (6)

Using equation (1),

�

�w

� UbUb
h0

R

� �1=3

: (7)

Assuming a uniform hw and negligible wind shear stress at
the channel surface, applying a force balance results in
�=�w ¼ gRS, where g is the gravitational acceleration.
Combining this with equation (7) results in

Ub �
h0

R

� ��1=6 ffiffiffiffiffiffiffiffi
gSR

p
: (8)

which recovers Manning’s equation if n�1 � h�1=6
0

ffiffiffi
g
p

. The
exponent 1/6 for h0 is the typical ‘‘Strickler’’ scaling, and
the g�1=2 scaling has been derived or used by a number
of studies [Chow, 1959; Carr, 1979; Komar, 1979; Katul
et al., 2002].

2.2. The Submerged Canopy Formulation

[7] The approach above can be extended to determine
Ub of a submerged aquatic canopy, also illustrated in
Figure 1. The canopy consists of cylindrical elements of di-
ameter d and height hc. The cylindrical canopy elements
have a leaf area density a, defined as the canopy frontal
area per volume. Its mean value can be determined from an
‘‘equivalent’’ leaf area index (LAI) using a ¼ LAI=hc. The
density of the canopy elements in the channel bed, defined
as the number of stems per unit area, is nd, such that the
average spacing between canopy elements is Sc ¼ nd � d.
The drag exerted by the canopy is represented by a constant
drag coefficient Cd. As before, the flow in the channel has
a depth hw, with hw > hc. The submergence depth of
the vegetation can be defined by the dimensionless height
� ¼ hc=hw < 1. A two-layer velocity model is now assumed
on the basis of the fact that the average velocity in the can-
opy is finite but substantially lower than the average velocity
above the canopy for dense canopies [e.g., Nepf and Vivoni,

2000]. The velocity is assumed to have a constant average
value within the canopy Uc, and a constant average value
above it, with a discontinuity of size �U occurring at the
canopy top. The flow velocity above the canopy is therefore
Uc þ�U . Assuming � is known, the Ub is given by,

Ub ¼ Uc þ ð1� �Þ�U : (9)

[8] As before, the shear stress at the top of the canopy
(� c) is assumed to be dominated by eddies of a single opti-
mal size (s) most efficient at transferring momentum. Such
a dominant eddy is centered at the top of the canopy, as
illustrated in Figure 1. As with the derivation of � , � c

depends on vn and vt. The vt again depends on the differ-
ence between the velocity at the top of the eddy, now
Uc þ�U , and the velocity at the bottom of the eddy, now
Uc. Therefore, vt � �U . As before, vn is the characteristic
velocity of eddies of size s (us) and the Kolmogorov four-
fifths law can be used so that

us ¼ Ub
s

hw

� �1=3

: (10)

[9] The use of the four-fifths law assumes that the Kol-
mogorov model of turbulence is an accurate description of
the flow at the canopy top. Some evidence exists to support
this assumption. Figure 2 presents an idealized version of
vertical velocity energy spectra measured by Poggi et al.
[2004a, Figure 5b] in a flume with submerged steel rods
acting as canopy elements. The spectrum at a height near
the canopy top (z=hc ¼ 1:1) is close to the expected Kolmo-
gorov spectrum in terms of scaling laws. Inside the canopy,
the spectrum is complicated by numerous factors including
wake production at Strouhal frequencies commensurate
with the generation of Von Karman streets, shear produc-
tion at larger scales, and the lack of Kolmogorov scaling
often used in delineating the inertial subrange.

[10] Equation (10) also assumes that the hw length scale
is within the inertial subrange at z ¼ hc. The canopy top
spectrum in Figure 2 shows that while the inertial subrange
extends to hc at z=h � 1, it does not extend to hw. However,
the spectrum at z=h � 1 resembles one with conventional
descriptions of the modulations to the K41 spectrum by
production and dissipation. Appendix A explores the use of
a canonical spectrum with these modulations (that of Gioia
et al. [2010], which resembles the spectrum at z=h � 1:9).
Accounting for the energetic and dissipative regimes only
has a minor effect on the predicted n, suggesting that the
use of Kolmogorov’s four-fifths law in describing us is a
reasonable assumption up to scales commensurate with hw,
at least at the canopy top. As shown in Figure 2, the use of
the four-fifths law is not accurate for describing flow
deeper in the canopy; hence using this approach is ques-
tionable when describing turbulent stresses at some arbi-
trary level inside the canopy.

[11] To evaluate us in equation (10), the size of the eddy
dominating the shear stress must be known. The shear
stress is dominated by the largest possible eddy centered at
the top of the canopy. Both horizontal and vertical length
scales can limit the eddy size. Vertically, the eddy radius s
is constrained by the depth of water above the canopy
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hwð1� �Þ and by the depth to which the eddies can effec-
tively penetrate the canopy. The penetration depth is con-
ventionally defined as the depth at which the Reynold’s
stress is 10% of the top of the canopy value [Nepf and
Vivoni, 2000]. Across a wide range of experiments, Nepf
et al. [2004] found that the penetration depth � was given by

� ¼
0:21

Cda
; ðCdahcÞ�1 � 4;

0:85hc; ðCdahcÞ�1 > 4:

8><
>: (11)

The limiting vertical length scale is given by r ¼ min
ð�; hw � hcÞ. The limiting horizontal length scale is given
by B=2. Since the canopy eddies do not continuously span
the channel laterally, not all momentum is necessarily
absorbed over the distance between canopy elements Sc.
The B=2 is therefore expected to be a more appropriate hor-
izontal length scale than Sc. In the derivation here, rela-
tively wide channels are assumed so that hw < B. As a
result, r < B and s ¼ r. This eddy length scale is supported
by the measurements of Ghisalberti [2010].

[12] The phenomenological description of � c can be used
to close the momentum budget by employing a force bal-
ance on the layer of flow above the canopy. Assuming the
flow is steady and uniform and that dispersive fluxes are
small enough to be neglected [Poggi et al., 2004b], the

force of gravity on the water above the vegetation canopy
is balanced by the shear stress produced at the top of the
canopy so that

�wgðhw � hcÞS ¼ �c þ �w; (12)

where �w is the drag on the channel walls above hc, which
is assumed to be small relative to the drag at the top of the
canopy. Evaluating the shear stress in equation (12) and
simplifying gives

gðhw � hcÞS ¼ K�
r

hw

� �1=3

Ub�U ; (13)

where K� is a constant of proportionality.
[13] Applying a force balance to the entire channel

(using the same assumptions as in equation (12)) provides
an equation for Uc given as

�wghwS ¼ �w

1

2
CdahcU2

c þ �bð0Þ þ �wð0Þ; (14)

where the right-hand side is the drag force created by the
canopy elements and the drag at the canopy bed �b and on
the channel walls �w. The �bð0Þ and �w are assumed here to
be negligible relative to the canopy drag. With this simplifi-
cation,

Uc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gS

�Cda

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
2gSlc

�

r
: (15)

The quantity lc ¼ ðCdaÞ�1 is known as the adjustment
length scale and is used in canopy turbulence studies to
parameterize the loss of turbulent kinetic energy from
advecting eddies due to their dissipation by the canopy drag
elements [Finnigan, 2000; Belcher et al., 2003].

[14] Equations (9), (13), and (14) form a system of three
equations with three unknowns, Ub, Uc, and �U . Combin-
ing the three equations leads to a single quadratic equation
for Ub,

U2
b �

ffiffiffiffiffiffiffiffiffiffiffi
2gSlc
�

r
Ub � ð1� �Þ

gðhw � hcÞS
K�

hw

r

� �1=3

¼ 0: (16)

Substituting Manning’s equation provides a single quad-
ratic equation for n :

ð1� �Þ gðhw � hcÞ
K�R2=3

hw

r

� �1=3

n2 þ
ffiffiffiffiffiffiffiffi
2glc

�

r
n� R2=3 ¼ 0: (17)

Equation (17) has only a single positive root. Unlike Ub, n
is independent of S, as expected. Note that for a vegetated
channel, the Strickler scaling is not recovered when hc goes
to 0 since the bed stress �b is assumed zero. If �b is finite
and accounted for, the Strickler scaling will be recovered
for the ho of the channel bed via the conventional argu-
ments of Gioia and Bombardelli [2002].

3. Data Sets
[15] The model was tested using a data set consisting of

a large range of laboratory measurements of flows with

Figure 2. Idealized version of the energy spectra meas-
ured at different heights in Poggi et al. [2004a]. The spectra
are premultiplied by the wave number, such that a slope
of �2/3 corresponds to the slope of �5/3 (¼ �2/3 – 1) in
the usual Kolmogorov spectrum. The black solid line is
the spectrum right above the canopy top, at z/h ¼ 1.1, while
the red dashed line represents the spectrum deep within the
canopy, at z=h < 1. The blue dash-dotted line is the spec-
trum at a height well above the canopy top. The green verti-
cal lines correspond to the frequencies associated with the
water depth hw and the canopy height hc in the experiments
of Poggi et al. [2004a], respectively.
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submerged vegetation from the literature. It includes the
data sets listed by Poggi et al. [2009] and Cheng [2011].
One hundred sixty-eight experiments in the data set exam-
ine rigid canopy elements [Fenzl, 1962; Dunn et al., 1996;
Stone, 1997; Meijer and van Velzen, 1999; Lopez and
Garcia, 2001; Ghisalberti and Nepf, 2004; Poggi et al.,
2004a; Murphy et al., 2007; Liu et al., 2008; Nezu and
Sanjou, 2008; Yang and Choi, 2009; Cheng, 2011], and 67
experiments considered flexible vegetation [Dunn et al.,
1996; Carolla et al., 2002; Jarvela, 2005; Ciraolo and
Ferreri, 2007; Kubrak et al., 2008; Yang and Choi, 2009].
When Cdahc < 0:2, eddies may penetrate to the channel
bed [Nepf et al., 2007], which would invalidate the assump-
tion of a nonnegligible bed stress in equation (14). Because
the model is only valid when Cdahc > 0:2, only experi-
ments that meet this condition are included.

[16] The drag coefficient was not measured in all of the
studies used. Wherever an estimate of Cd was used in the
original study, that value was used here as well. When Cd

is unknown, Cd ¼ 1:13 was used. This was the mean value
measured experimentally by Dunn et al. [1996], matching
analytical estimates of Li and Shen [1973]. This is also the
value used by Lopez and Garcia [2001].

[17] Flexible vegetation elements can deflect, changing
the geometry of the problem. Therefore, the rigid and flexi-
ble vegetation cases are considered separately. For flexible
vegetation, hc is assumed to be the reported deflected can-
opy height. The experiments cover a wide range of n
(0.018–0.139 for rigid vegetation and 0.011–0.130 for flexi-
ble vegetation) that approximately spans the entire range of
n values typically assumed for natural channels [Chow,
1959]. The data set also spans a range of values for the
Reynolds number, �, S, and R. A table with parameter val-
ues for each of the data points is included as auxiliary ma-
terial.1 A best fit value is found separately for the scaling
parameter K� for rigid and flexible canopies.

4. Results
[18] Huthoff et al. [2007] was the first to apply the

methodology of Gioia and Bombardelli [2002] to derive a
two-layer velocity model for vegetated channels, using an
approach similar to that employed here. Two crucial differ-
ences exist between the model of Huthoff et al. [2007]
and the one proposed here: (1) Huthoff et al. argued that
velocity fluctuations tangent to the streamflow are propor-
tional to the average velocity above the canopy rather
than to the difference in velocity above and below the
canopy top, as argued here, and (2) the length scale used
by Huthoff et al. is proportional to the horizontal spacing
between regularly distributed canopy elements, rather than
depending on the penetration depth or hw � hc as argued
here. Because the conceptual reasoning behind the two
models is similar, the performance of both models on the
data set is compared.

4.1. Rigid Canopies

[19] The best fit value of the (dimensionless) K� is
0.21 ± 0.04 for the rigid canopies. This estimate is robust

with respect to the number of data points used to estimate
its value. When half of the data points were randomly
selected and used to estimate K� , its value did not change
markedly. This provides confidence that the estimate of K�

is robust and can be applied to other conditions.
[20] Figures 3a and 3b compare measured and predicted

values of n and Ub of the rigid canopy data set for the pro-
posed model and for the model of Huthoff et al. [2007].
Both models perform reasonably well in estimating both
variables. Within the data set of Stone [1997], four groups
of experiments exist for which all runs have the same can-
opy density, canopy height, and flow depth and width. Only
the channel slope (and flow rate) differs between runs.
Because n is independent of S, the estimated n is the same
for each of the runs in a group. However, the measured n
varies between estimates. These groups are identifiable as
the clusters of points that form a horizontal line in Figure 3a.
The estimates of Ub for the same data points do not have a
qualitatively different error structure than the rest of the
data set, suggesting that the (in)sensitivity of the n esti-
mates to the channel slope S is more incorrect than the sen-
sitivity of the Ub estimates to S. Since the only difference
between the models of n (equation (17)) and Ub (equation
(16)) is in the application of Manning’s equation, this in
turn suggests that the variation in measured n for these runs
occurs because of an S dependence in n, rather than
because of some other variable factor between the different
runs that is not accounted for here.

[21] Table 1 shows the coefficient of determination, root-
mean-square error (RMSE), and bias for each model and
variable combination. The model proposed here has a lower
root-mean-square error than the model of Huthoff et al.
[2007]. Although the eddy length scale and the ejection
contribution used by the two models differ, errors associ-
ated with both models are broadly similar. Experiments
with relatively high error in one model often have relatively
high errors for the other. This can be explained by noting
that the model performance is relatively insensitive to the
length scale used for r (i.e., the limiting vertical length
scale). The root-mean square distance between estimates of
n with eddy length scale of r and estimates using an eddy
length scale equal to Sc is only 0.0014 s m�3.

[22] The model is relatively insensitive to the precise
value of the drag coefficient used. When using the value
Cd ¼ 1:13 instead of the reported Cd when available, no
estimate of n changed by more than 15% (not shown).
In general, the drag coefficient may depend on the exact
variation of canopy properties with height from the channel
bottom, which may not be known and can be difficult
to estimate for a large range of species without detailed
measurements. The model’s insensitivity to Cd thus signifi-
cantly improves the range of its applicability for practical
purposes.

4.2. Flexible Canopies

[23] For flexible canopies, the best fit value of K� is
lower at 0.74 ± 0.016. The reduction in K� is expected
because vegetation deflection in flexible canopies often
leads to drag reductions. The model performance for cases
of flexible canopies is also presented in Figure 3 and sum-
marized in Table 1. Not surprisingly, the models perform
worse than for the rigid case. The deflection of flexible

1Auxiliary materials are available in the HTML. doi:10.1029/
2011WR011000.
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vegetation affects not only the canopy height and drag, but
also the leaf area density and any coupling between the
flow inside and above the vegetation. This is not explicitly
accounted for in either of the two models.

[24] As a result of the failure to account for canopy
deflection, the assumption of constant leaf area density,
drag coefficient, and canopy layer velocity Uc is no longer
realistic in flexible canopies. In reality, Uc increases with
height and changes during the deflection cycle. The tangent
velocity scale vt is higher than Uc at the bottom of the
eddy, so that the value of vt used in the eddy momentum
transfer, calculated as ðUc þ�UÞ � Uc ¼ �U , is too high.
Equation (13) therefore predicts a Ub that is too low, and
the estimate of n is high. This is reflected in Table 1
through the bias in n. The magnitude of this error is
expected to depend on how far the dominant eddy can pen-
etrate into the canopy, and therefore on the ratio of r to hc.
With the linear model for r assumed here, r=hc ¼ 0:21lc=hc

for sufficiently dense data sets that are not limited by the
flow depth above the canopy (r ¼ �). Figure 4 shows the
magnitude of the absolute error as a function of 0:21lc=hc

for such experiments. The error decreases with 0:21lc=hc,
suggesting that the variability of Uc with height is a possi-
ble source of error for the model. The data in Figure 4 do
not collapse to a single line because the magnitude of other
errors depends on flow conditions as well. Nevertheless,
the behavior is roughly similar for each individual data set

Table 1. Comparison Between Measured and Modeled Ub and n
for Rigid and Flexible Canopiesa

R2 RMSE Bias m b

Rigid Canopy
n, Huthoff et al. 0.80 0.019 0.81 0.55 0.013
n, proposed 0.82 0.012 1.09 0.57 0.026
Ub, Huthoff et al. 0.90 0.068 1.29 1.18 0.010
Ub, proposed 0.90 0.046 0.96 0.80 0.020

Flexible Canopy
n, Huthoff et al. 0.65 0.021 1.51 0.69 0.027
n, proposed 0.65 0.019 1.33 0.50 0.028
Ub, Huthoff et al. 0.51 0.21 0.79 0.46 0.12
Ub, proposed 0.44 0.21 0.89 0.34 0.19

aThe coefficient of determination (R2), the root-mean-square error (RMSE),
and the relative error or bias (¼ (measured � modeled)/measured) are shown.
Parameters m and b are the slope and intercept of a robust linear regression of
the predicted against the measured values with a bilinear weighting scheme.
Huthoff et al. refers to the work by Huthoff et al. [2007].

Figure 3. Comparison between predicted and measured (a) Manning’s roughness coefficient n and
(b) bulk velocity Ub for the laboratory experiments with rigid canopy elements. (c and d) The same as
Figures 3a and 3b, respectively, but showing the laboratory experiments with flexible canopy elements.
Black symbols represent predictions of the proposed model, while green symbols represent those from the
model of Huthoff et al. [2007]. Crosses represent points for which the drag coefficient was not studied in the
original experiment and for which its value was assumed to equal 1.13 as in the work by Dunn et al. [1996].
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with flexible canopies, except the data of Carolla et al.
[2002]. Unlike other data sets, that of Carolla et al. [2002]
uses a variety of species as canopy elements, likely compli-
cating the model behavior and sensitivities. Note that, with
the exception of data from Jarvela [2005] and Carolla et al.
[2002], most estimates have a relative error of less than 0.5,
a reasonable value given the large range of tested n.

[25] As canopy density increases, the system begins to
act similarly to flow over a permeable wall of height hc.
The flow rate below the depth to which the eddy penetrates
becomes essentially zero. The contribution of Uc to
equation (9) should then be less, such that the model used
here overestimates Ub and underestimates n. This predic-
tion is supported by the model underestimating n for the
nine data points of Jarvela [2005], which are by far the
least porous data points measured (taking canopy porosity
as 1� �

4 ad, [Nepf et al., 2004]). The velocity profiles
observed in the study of Jarvela [2005] are near zero in
much of the canopy, suggesting that the lack of flow is the
dominant source of error for these nine experiments.

5. Conclusions
[26] The model presented here phenomenologically links

turbulence theory with vegetation properties to make pre-
dictions about flow in densely vegetated channels. The
model can be applied to both rigid and flexible vegetation,
but performs better for the rigid case as expected. The dis-
crepancy in performance is attributed to the fact that the

model does not fully account for the variability in the
deflected vegetation height between sweeps and ejections
[Ghisalberti and Nepf, 2006] or for the effect of the canopy
deflection on the flow. When the vegetation canopy is flexi-
ble, Cd and Uc can vary significantly with height and Ub,
which may contribute to prediction errors for flexible cano-
pies. Vegetation and vegetation proxies are not perfectly
cylindrical and may include leaves and other elements that
cause significant variations in Cd and a with height. This
amplifies the effects of any variability with height in Uc.

[27] To use a phenomenological approach for describing
the canopy shear stress (equation (1)), two quantities must
be determined: the eddy velocity scaling vn and vt and the
proportionality between the eddy velocities and the shear
stress, given by K� . The value of K� estimated here is
smaller than values of K� proposed for similar phenomeno-
logical models [Gioia and Chakraborty, 2006; Gioia et al.,
2010], both in the case of rigid and of flexible canopies.
Simulation studies can provide further insight into the
value and dependence of K� on vegetation properties. Sig-
nificant progress has been made in recent years on simulat-
ing the dynamic two-way interaction between deflecting
plants and flow using large-eddy simulation studies
[Dupont et al., 2010], and other approaches [de Langre,
2008]. These approaches may also be used to determine the
variables that might impact K� , including the density and
the elastic properties of the vegetation.

[28] The magnitude of the bias and the RMSE for the
model proposed here are lower than those generated by the
model of Huthoff et al. [2007] for both rigid and flexible
canopies. One of the key differences between the model of
Huthoff et al. [2007] and that presented here is the choice
of length scale as the scaling factor for the eddy velocity.
When applied to rigid canopies, the model is essentially
insensitive to the choice of a vertical (r) or horizontal (S)
length scale. Though the choice of the eddy length scale
influences the estimates of n and Ub for flexible canopies,
the effect is still much smaller than the effect of the choice
of vt. Physically, the proposed model suggests ejections are
nonnegligible contributors to the shear stress at the top of
the canopy. The small sensitivity to n and Ub is not surpris-
ing, because equations (16) and (17) show that Ub and n
depend only on s1=3. This one-third power results from the
use of Kolmogorov’s four-fifths law for scaling the eddy ve-
locity and has the effect of dampening variations in the
length scale. Despite this dampening effect, a vertical length
scale performs slightly better than using a horizontal length
scale.

[29] Finally, the fact that the model presented here
allows prediction of n and Ub independently of the spacing
between canopy elements is a considerable advantage. It
allows the model to be applied to heterogeneous canopies
that do not have a unique spacing width, a necessary step
toward bridging the gap between measurements in labora-
tory flows and predictions for natural channels.

Appendix A
[30] The assumption that the turbulent spectrum is

entirely in the inertial range can be relaxed to derive a
more complete equation for us. This equation is derived

Figure 4. The magnitude of relative error in the bulk ve-
locity Ub (the magnitude of the error in predicted Ub, nor-
malized by the observed value) as a function of 0:21lc=hc,
the ratio of the predicted r=hc for different data sets. Only
data with flexible canopies for which r=hc ¼ 0:21lc=hc are
shown. Thus, very sparse data sets (for which
ðCdahcÞ�1 > 4) and data sets for which the flow depth
above the canopy is limiting (hw � hc < �) are not shown.

W02522 KONINGS ET AL.: MANNING’S ROUGHNESS IN VEGETATED CHANNELS W02522

7 of 9



here in analogy to work of Gioia and Chakraborty [2006].
The us depends on the energy spectrum according to

u2
s ¼

Z s

0

Eð�Þ
�2

d�; (A1)

where � is a length scale, and Eð�Þ is given by [Pope,
2000]

Eð�Þ ¼ A�2=3�5=3cdð�Þceð�Þ; (A2)

where cd and ce are correction formulas for the reductions
in the dissipative and energetic regions of the spectrum,
respectively. A is a dimensionless constant and has a value
of about 1.5 [Tennekes and Lumley, 1972, p. 271]. The
cdð�Þ ¼ expð�	
=�Þ, where 	 ¼ 2:1 scales the exponen-
tial and 
 ¼ �3=4��1=4 is the viscous length scale, with � the
kinematic viscosity of water. The value of 
 is determined
below. The cd decreases exponentially from one as �
decreases and nears the viscous length scale. The

ceð�Þ ¼ ð1þ �ð�=RÞ2Þ�17=6, where � ¼ 3:715 is a scaling
constant [Pope, 2000, p. 232–234]. The ce � 1 for most �
but increases as � nears R.

[31] Kolmogorov’s four-fifths law is applied at the
channel-wide scale to determine � as before, v3

n ¼ ð4=5Þ�R.
Considering the second-order structure function of velocity
and assuming that the correlation function of the velocity

fluctuations u0 goes to zero for large eddies, v2
n � u02 . Since

the velocity fluctuations and the depth-averaged velocity
scale with the same canopy boundary conditions, it is rea-

sonable to assume u02 � U2
b . Defining the constant of

proportionality between the two quantities to be Ku,
vn ¼ KuUb. Thus, � ¼ 5=4K3

u U3
b=R, which allows calcula-

tion of 
 as


 ¼ �3=4 5K3
u U3

b

4R

� ��1=3

: (A3)

[32] Combining these definitions and substituting into
equation (A1) leads to

u2
s ¼

5

4

� �2=3 A

R2=3

Z s

0
��1=3exp

�	

�

� �
ð1þ �ð�=RÞ2Þ�17=6d�

" #

� K2
u U2

b : ðA4Þ

Note that unlike in equation (6), us no longer depends line-
arly on Ub because � depends (slightly) on Ub. This equa-
tion for us has an additional fitting parameter Ku. If the
equation is combined with the two-layer flow model
described above, and an optimal fitting value of Ku is used,
no estimate of n changes by more than 5%.
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