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Estimating precipitation over large spatial areas remains a challenging problem for hydrologists. Sparse
ground-based gauge networks do not provide a robust basis for interpolation, and the reliability of
remote sensing products, although improving, is still imperfect. Current techniques to estimate precipi-
tation rely on combining these different kinds of measurements to correct the bias in the satellite obser-
vations. We propose a novel procedure that, unlike existing techniques, (i) allows correcting the possibly
confounding effects of different sources of errors in satellite estimates, (ii) explicitly accounts for the spa-
tial heterogeneity of the biases and (iii) allows the use of non overlapping historical observations. The
proposed method spatially aggregates and interpolates gauge data at the satellite grid resolution by
focusing on parameters that describe the frequency and intensity of the rainfall observed at the gauges.
The resulting gridded parameters can then be used to adjust the probability density function of satellite
rainfall observations at each grid cell, accounting for spatial heterogeneity. Unlike alternate methods, we
explicitly adjust biases on rainfall frequency in addition to its intensity. Adjusted rainfall distributions can
then readily be applied as input in stochastic rainfall generators or frequency domain hydrological mod-
els. Finally, we also provide a procedure to use them to correct remotely sensed rainfall time series.

We apply the method to adjust the distributions of daily rainfall observed by the TRMM satellite in
Nepal, which exemplifies the challenges associated with a sparse gauge network and large biases due
to complex topography. In a cross-validation analysis on daily rainfall from TRMM 3B42 v6, we find that
using a small subset of the available gauges, the proposed method outperforms local rainfall estimations
using the complete network of available gauges to directly interpolate local rainfall or correct TRMM by
adjusting monthly means. We conclude that the proposed frequency-domain bias correction approach is
robust and reliable compared to other bias correction approaches.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Spatially explicit rainfall estimates are crucial for hydrologic
predictions, but due to challenges in observing rainfall at wa-
tershed scales, rainfall estimates remain a major source of uncer-
tainty for hydrologic models [1]. In many parts of the world,
ground-based rain-gauge networks are irregular and locally
sparse [2], and may be biased with respect to the sources of envi-
ronmental variability (see Fig. 1 for an example). Such networks
do not provide a robust basis for inferring the spatial pattern of
rainfall fields. An alternative and explicitly spatial rainfall product
is provided by satellite observations of precipitation. Unfortu-
nately, satellite observations of rainfall have widely acknowl-
edged limitations, including sensitivity to precipitation type [3],
underestimation of orographic rainfall [4], a tendency to miss
snowfall [5], inability to capture short rainfall events [6] and sys-
tematic biases in mountainous areas [5,7–9]. Using ground-based
data to correct biases in satellite data provides one method to ad-
dress these limitations. For example, the satellite observations in
the NASA Tropical Rainfall Measuring Mission (TRMM) 3B42 data-
set are adjusted using monthly-averaged ground observations
provided by local monitoring agencies to the Global Precipitation
Climatology Centre (GPCC) [3]. However, the efficiency of the
adjustment is limited by the scarcity of available gauges and typ-
ically requires careful regional evaluation against local precipita-
tion measurements.

The correction applied by NASA on TRMM is a standard bias
adjustment procedure for satellite rainfall observations, based on
correcting rainfall time series – in this case by regression analysis
applied to cumulative rainfall totals [7,10,11]. Other standard pro-
cedures adjust quantiles of the daily rainfall to match those ob-
served at gauges [12]. These approaches suffer from several
drawbacks:
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Fig. 1. Study region and available data. (a) Location of the available gauges and mean annual rainfall. The figure shows vast zones in the North that are not covered by the
gauge network. The difference in annual rainfall between Pokhara (P) and Mustang (M), two proximate regions separated by the Annapurna range, illustrates the importance
of rain shadow effects. The example of time series correction described in Section 3.2.6 focuses on the rainfall gauge at Darchula (D) in western Nepal. (b) Yearly rainfall in
2010 measured by TRMM 3B43 v6 (monthly precipitation) and aggregated annually, showing decreasing trends towards the east and north. (c) Kernel density estimates of
the altitude distributions of the area and of the rain gauges. The figure shows that the altitude distribution of the area is bimodal with modes at 1000 masl and 5000 masl. This
distribution is not matched by the gauges, which are preferentially located below 3000 masl.
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1. Biases in TRMM observations of rainfall timeseries are influ-
enced by errors in both rainfall frequency and rainfall inten-
sity, which may have opposite signs [13]. Adjusting satellite
precipitation totals or PDFs will thus correct errors in the
magnitude of rainfall, but not in its temporal structure,
although both factors are important for hydrological predic-
tions [14,15].

2. Although some recent studies account for the observed spatial
heterogeneity in biases, and in doing so significantly improved
the corrected dataset [10,11], approaches based on preserving
regional rainfall totals often do not account for spatial patterns
in bias or focus on single precipitation stations. One of the fac-
tors that makes spatially-explicit corrections challenging is the
upscaling of point observations from gauges to areal rainfall at
the resolution of the satellite grid.

3. Finally, correction of monthly time series on a pixel by pixel
basis is numerically intensive, and cannot take advantage of
historical rainfall datasets which, although not overlapping
with contemporary observations, may still contain useful infor-
mation about spatial patterns in rainfall.

We therefore propose an alternative strategy for bias adjust-
ment of satellite rainfall data using ground-based gauge observa-
tions. Instead of adjusting daily rainfall to match the mean
monthly precipitation, we perform the bias adjustment on a set
of (pseudo) stationary stochastic parameters that describe the
rainfall process in terms of frequency, intensity, and the autocorre-
lation of wet and dry periods [16–18]. This approach addresses the
key limitations of time series based bias adjustment:
1. It is a direct response to the observation of different direction-
ality in TRMM-gauge bias arising due to different and indepen-
dent features of the rainfall time series [13]. This observation
implies that separating the bias adjustment for rainfall occur-
rence and intensity might improve the robustness of the result-
ing rainfall estimates.

2. It allows different features of rainfall to be independently inter-
polated accounting for spatial heterogeneity and, unlike exist-
ing studies, also accounting for potential differences in spatial
heterogeneities between stochastic rainfall features.

3. Being in the frequency domain, the bias adjustment can be
operated using non overlapping observed time series provided
stationarity conditions are satisfied.

A key contribution of the proposed procedure lies in its ability
to spatially aggregate and interpolate the stochastic rainfall
descriptors at the grid resolution. This provides a ground truth esti-
mate of the daily rainfall distribution at each pixel that can be used
to correct satellite rainfall distributions, with two potential appli-
cations. Firstly, grid-scale rainfall cumulative probability densities
are valuable for correcting rainfall timeseries magnitudes via quan-
tile mapping [12]. Our proposed method explores the upscaling of
gauge-derived rainfall PDFs and their spatial interpolation, allow-
ing corrections to the rainfall CDF to be applied in a spatially expli-
cit fashion. Moreover, the procedure upscales and interpolates
information about the autocorrelation of rainfall, allowing the bias
adjustment procedure to correct the temporal structure of satellite
rainfall observations as well as the magnitudes. Since the temporal
structure of rainfall is an important driver of hydrological re-



Table 1
Acronyms, variables and subscripts.

SMP Stochastic model parameter
MAE Mean absolute error
X Daily precipitation
P Probability of daily precipitation occurrence
Np Number of gauges in the considered pixel
Ng Number of gauges to interpolate from
NMC Number of Monte Carlo rounds
NCV Number of cross validation rounds
ai Fraction of pixel occupied by the Thiessen polygon of gauge i

v ðparamÞ
i

Interpolation weight associated to gauge i and parameter param

CðdÞ Correction factor on variance for areal rainfall on in a pixel of
diagonal d

i Subscript for gauges (point rainfall)
pt Subscript for pixels aggregated from gauges (point rainfall)
pix Subscript for pixels aggregated from gauges (areal rainfall)
TRMM Subscript for TRMM pixels
wet Subscript for rainy days
j Subscript for Monte Carlo or cross validation rounds
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sponses in the vadose zone [14] and in the flow regime [15], incor-
porating this information into satellite bias correction is a useful
advance. The stochastic parameters may be directly utilized in sto-
chastic description of the resulting streamflow [15]; used to gener-
ate ensembles of synthetic time series data using stochastic
weather generation models [19,20], or incorporated into time-ser-
ies correction approaches (as outlined in Section 2.5).

The proposed approaches are illustrated here using Nepal as a
case study. Nepal provides an excellent opportunity to test the
new bias correction procedure because two satellite rainfall prod-
ucts are available that incorporate very different bias-adjustment
techniques: TRMMv6 and TRMMv7. The major distinction between
the two datasets for terrestrial rainfall estimates lies in the rain
gauge datasets used for monthly bias adjustment [21]. In Nepal
the number of considered gauges increases from 11 (GPCC moni-
toring dataset v2) to 280 gauges (GPCC full analysis dataset v6).
Thus, TRMMv6 in Nepal represents a satellite rainfall data product
with minimal ground-based correction, while TRMM v7 represents
satellite data corrected using conventional time series adjustment.
In this study, we therefore develop a bias adjustment technique,
apply it to TRMM v6 and compare the results against the perfor-
mance of TRMM v7 as a benchmark.

We first describe a stochastic rainfall model (Section 2.1) and its
use to adjust satellite rainfall observation biases through space.
Spatial adjustment of stochastic parameters is not straightforward
because of their nonlinear relationships to the moments and time-
structure of the rainfall distribution. To estimate bias, the stochas-
tic model parameters obtained from point-scale rainfall measure-
ments at gauges are spatially aggregated to the scale of a
satellite observation pixel (Section 2.2). The stochastic model
parameters estimated at the pixel scale are then spatially interpo-
lated to provide estimates at the satellite pixels devoid of gauges
(Section 2.3). Section 2.4 summarizes the method to correct the
bias of gridded, remotely sensed daily rainfall observations in the
frequency domain using multi-site gauge observations – the main
contribution of this paper. Using bias adjusted frequency domain
information, rainfall time series can then easily be adjusted
through quantile mapping (Section 2.5). An illustrative example
of time series correction is given in Section 3.2.6. The remainder
of the paper focuses on assessing the performance of the frequency
domain bias correction method, which underpins both the stochas-
tic and time-series adjustments. The sensitivity of the method to
common sources of uncertainties is first assessed in a Monte Carlo
analysis (Section 3.1), and its ability to adjust the frequency, mean
intensity and variance of actual remote sensing rainfall data is as-
sessed in a cross validation analysis using Nepalese rainfall for var-
ious densities of gauge networks (Section 3.2). The main results
and their implications are discussed in Section 4 and Section 5 con-
cludes. Acronyms are listed in Table 1.
Table 2
Stochastic model parameters (SMP).

PðwÞ01
Probability of a dry day being followed by a wet day in the wet season

PðdÞ01
Probability of a dry day being followed by wet day in the dry season

PðwÞ11
Probability of a wet day being followed by wet day in the wet season

PðdÞ11
Probability of a dry day being followed by wet day in the wet season

GSðwÞ Gamma shape parameter for daily rainfall depth in the wet season

GSðdÞ Gamma shape parameter for daily rainfall depth in the dry season

GRðwÞ Gamma rate parameter for daily rainfall depth in the wet season

GRðdÞ Gamma rate parameter for daily rainfall depth in the dry season

RnStr Average calendar day when monsoon starts
RnStp Average calendar day when monsoon ends
2. Theory

2.1. Stochastic model

We use a two-step stochastic weather generator to represent
the statistical properties of the rainfall time series. We firstly dis-
aggregate the time series into two independent seasons [16] the
dry season and the monsoon. We identify the seasons by the calen-
dar days corresponding to the average start date (RnStr) and end
date (RnStp) of the monsoon. Next, we describe the rainfall for each
season in terms of two stochastic processes: the daily occurrence,
and daily intensity of rainfall. We use a first-order Markov chain
model to represent rainfall occurrence [17,18]. This model is gov-
erned by two parameters P01 and P11, which characterize the prob-
ability of a rainy day, conditional on the previous day being dry
(P01) or rainy (P11). We use a gamma distribution with shape
parameter GS and rate parameter GR to describe the probability
distribution of daily rainfall depths on those days when rain oc-
curred. This representation of rainfall requires a total of 10 stochas-
tic model parameters (SMPs) listed in Table 2. These model
parameters are directly related to a range of relevant metrics that
describe rainfall distribution and can thus be used to evaluate the
bias adjustment method. These metrics are derived in Appendix A
and include the length of wet and dry spells, the number of rainy
days per year, the unconditional variance on daily rainfall and
the average annual rainfall.

2.2. Areal aggregation of stochastic model parameters

While gauges monitor precipitation at particular points, satel-
lites observe an areally averaged value of rainfall over many square
kilometers. Correcting remote sensing precipitation observations
therefore requires spatially aggregating point-scale precipitation
parameters to the level of the satellite resolution. We perform this
aggregation analytically, rather than directly from the time series
because (i) it is more computationally efficient and (ii) it allows
us to use data provided by on (stationary) rainfall gauges that do
not overlap in time with the TRMM observation window. We out-
line the applicability of the methods to the case study with TRMM
in Nepal below, including an evaluation of the stationarity of
ground-based rainfall measurements in terms of the 10 SMPs.

2.2.1. Seasonal parameters
We assume that the starting day of the rainy and dry seasons at

the pixel level can be approximated by the weighted average of the
corresponding values across the Np gauges in the pixel,
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Strpix ¼
XNp

i¼1

aiStri Str 2 fRnStr;RnStpg ð1Þ

where ai is the proportion of the pixel’s area covered by a Thiessen
polygon centered on gauge i.

2.2.2. Occurrence parameters
A pixel should be classified as ‘rainy’ on a given day if rain oc-

curs at any of its gauges during that day. Thus the probability of
rain at the level of a pixel is not a simple average of the occurrence
probabilities at the gauges within the pixel, but is modified by the
correlation between the gauges. If the correlation length-scale of
rainfall exceeds the pixel size, then it is reasonable to assume that
the correlation between the rain occurrence probabilities Pi at the
different gauges is positive and maximal. That is, if the gauge that
is most likely to receive rainfall is dry, the pixel is also dry. Using
this assumption, the probability of rainfall in a pixel is well approx-
imated by the maximum occurrence probability across the Np

gauges within that pixel, as:

Ppix �max Pi ð2Þ

A similar assumption about the ratio of wet-to-wet transitions
Pi � P11;i leads to the following estimate for the pixel-level transition
probability:

P11;pix � max
maxðPi � P11;iÞ

Ppix

; 1�
PN

i¼1Pi � ð1� P11;iÞ
Ppix

( )
ð3Þ

where the transition probability P11 at the satellite pixel level can
be approximated by its lower bound. This bound is given by the
higher of (i) the maximal value of wet-to-wet ratio (P � P11) and
(ii) the sum of wet-to-dry transition ratios (P � P10) within that pixel.
The full derivation of Eqs. (2) and (3) is presented in Appendix B.
Our case study in Nepal is characterized by a maximum density
of 5 gauges per pixel and spatial autocorrelation ranges of approx-
imately 3 (dry season) to 4 (wet season) times the pixel size of
27.7 km (Table 4), meeting the assumptions used in the derivation
of Eqs. (2) and (3). We tested the performance of the aggregation
equations via a Monte Carlo analysis. We found that using Eqs. (2)
and (3) generated less than 2% error in both metrics (Pi and
Pi � P11;i). This error declined with an increase in the correlation
length scale, but increased with increasing numbers of gauges per
pixel.

2.2.3. Intensity parameters
To aggregate rainfall intensity we preserve the weighted aver-

age of the first two moments of the distributions measured at each
gauge, using the Thiessen polygon area ratios ai as weights. Doing
so based on the SMPs that describe the rainfall intensity (GS and
GR) poses three challenges. Firstly, the SMPs are non linearly re-
lated to the moments of the gamma distribution:

E X j wet½ � ¼ GS=GR ð4Þ
Var X j wetð Þ ¼ GS=GR2 ð5Þ

Thus, aggregating the weighted sum of the distribution’s parame-
ters is not equivalent to aggregating the distribution’s moments.
Secondly, the parameters represent the distribution of rainfall
intensity conditional on rainfall occurrence, so the probability P of
rainfall occurrence must be incorporated into the aggregation. Fi-
nally, the variance of areal rainfall is affected by spatial autocorre-
lation. A full derivation of the upscaling relationship for the
rainfall intensity properties, accounting for these three challenges,
is provided in Appendix C. The methodology used consists of (i)
conditioning for rainfall occurrence and the location of individual
gauges, (ii) applying the laws of iterated expectation and total var-
iance to compute the mean and variance of rainfall intensity at the
pixel scale (Eqs. (6) and (7)) and (iii) correcting the variance of areal
rainfall to account for the transition from point to areal probabilities
[22]. We assume the same functional form of the PDF applies to pix-
els and all gauges, meaning that the pixel-scale rainfall intensity is a
gamma distribution and that its parameters GS and GR are directly
related to its mean and variance as in Eqs. (4) and (5). With these
assumptions, we obtain the expectation and variance of the pixel-
level areal rainfall as:

E Xpix j wet½ � ¼ 1
Ppix

�
XN

i¼1

aiPiE Xi j wet½ � ð6Þ

Var Xpix j wetð Þ

¼ CðdÞ
Ppix

XN

i¼1

aiPi Var Xi j wetð Þ þ PiE Xi j wet½ �2 � PiE Xi j wet½ �
� �" #

þ CðdÞPpix E Xpix j wet½ � � E Xpix j wet½ �2
h i

ð7Þ

where Pi is the probability of rainfall occurrence at the gauge level,
and Ppix is the probability of rainfall occurrence at the pixel level
(from Eq. (2)). CðdÞ is an attenuation factor applied to the variance
of areal rainfall based on the derivation of Rodriguez-Iturbe and
Mejía [22]:

CðdÞ ¼
Z ffiffi

2
p

d

rðmÞf ðmÞdm 6 1;

where rðmÞ is the spatial correlation function of rainfall intensity
and f ðmÞ is the distribution of distances between two points chosen
at random in the pixel. Point-scale rainfall typically over-estimates
the variance of areal rainfall, so CðdÞ < 1. CðdÞ increases with pixel
size d and decreases with the spatial autocorrelation range, both
of which are typically spatially homogenous. In Nepal we estimated
Cð27:7 kmÞ as 0.75 in the monsoon and 0.86 in the dry season, using
a correlogram estimated from the spatial distribution of rainfall
intensity at gauges over 2,000 randomly selected days.

2.3. Spatial interpolation of stochastic model parameters

A typical spatial interpolation methodology would approximate
daily rainfall ~X at unmonitored locations as linear combinations of
Xi the rainfall measured at surrounding locations i on the same day,
weighted by vX

i , a normalized similarity metric based on relative
position (e.g. inverse weighted distance) or the spatial correlation
function of X (e.g. kriging):

~X ¼
XNg

i¼1

v ðXÞi Xi ð8Þ

Interpolation of the probabilistic descriptors of the rainfall, how-
ever, cannot be undertaken by directly interpolating the SMP’s be-
cause neither the moments of the gamma distribution of
conditional rainfall intensity nor the moments of the binomial dis-
tribution of daily rainfall occurrence are linear combinations of the
SMPs. Thus, we interpolate the moments of the distributions, ex-
pressed as functions of the SMPs. We assume that interpolation
must preserve seasonal transition dates (RnStr and RnStp), the daily
occurrence probability of rainfall (P) and the ratio of wet-to-wet
transitions (P � P11). This allows us to express the interpolated rain-
fall metrics as linear combinations of their respective values at the
Ng observed locations, which are directly related to the observed
SMPs:

fStr ¼
XNg

i¼1

v ðStrÞ
i Stri Str 2 fRnStr;RnStpg ð9Þ
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~P ¼
XNg

i¼1

v ðPÞi Pi ¼
XNg

i¼1

v ðPÞi

P01;i

1þ P01;i � P11;i
ð10Þ

gP � P11 ¼
XNg

i¼1

v ðP�P11Þ
i Pi � P11;i ¼

XNg

i¼1

v ðP�P11Þ
i

P11;iP01;i

1þ P01;i � P11;i
ð11Þ

Using similar reasoning to that in Section 2.2, but replacing area
weights ai with interpolation weights v ðEÞi , we compute the inter-
polated moments of the distribution of conditional rainfall inten-
sity. Here we use weights v ðEÞi generated from kriging of the
expected rainfall E Xi½ � for the interpolation of both the mean and
variance of the rainfall PDF. Either ordinary kriging or univerval
kriging can be used [23,24]. For this interpolation, we do not use
the attenuation factor CðdÞ as there is no point to area transforma-
tion. From Eqs. (6) and (7) we obtain the expectation and variance
of the rainfall at the ungauged location:

E ~X j wet
h i

¼ 1
~P
�
XNg

i¼1

v ðEÞi PiE Xi j wet½ � ð12Þ

Var ~Xjwet
� �

¼1
~P

XNg

i¼1

v ðEÞi Pi Var Xi jwetð ÞþPiE Xi jwet½ �2�PiE Xi jwet½ �
� �" #

þ ~P E ~X jwet
h i

�E ~X jwet
h i2

� �
ð13Þ

where Pi is the probability of rainfall occurrence at the observation
point i, and ~P the interpolated probability of rainfall given by Eq. (9).

2.4. Bias adjustment of stochastic model parameters

The bias adjustment approach is based on the assumption of
spatial correlation in the differences in daily rainfall between the
TRMM pixels and the (aggregated) gauges. Biases at pixels devoid
of gauges can then be estimated by interpolating the biases ob-
served at pixels that contain gauges. Interpolating the biases for
each stochastic parameter to un-gauged pixels raises the same
problems as interpolating the stochastic parameters within the
pixels (Section 2.3). Thus, we independently interpolate the SMPs
estimated from TRMMv6 at gauged pixels and the pixel-scale
SMPs estimated from the gauges (and not the difference between
them), before computing the biases at ungauged pixels as the dif-
ference between the two interpolations. The full bias adjustment
procedure thus consists of the following steps:

(i) Aggregating the SMPs observed at the gauges to the resolu-
tion of TRMM pixels (Section 2.2).

(ii) Interpolating the aggregated SMPs from the gauged to the
ungauged pixels (Section 2.3), labeled as ~SMPpix .

(iii) Interpolating the SMPs obtained for TRMMv6 at the gauged
pixels to the ungauged pixels (Section 2.3), labeled as

~SMPTRMM.
(iv) Computing the biases ~SMPTRMM at ungauged pixels by sub-

tracting the result of step (ii) ( ~SMPpix) to the result of step
(iii) ( ~SMPTRMM).

(v) Finally, biases are adjusted by subtracting the modeled bias
~SMPTRMM from SMPTRMM, the local SMPs of TRMMv6:
SMPadjusted ¼ SMPTRMM � DSM~PTRMM

¼ SMPTRMM � ~SMPTRMM � ~SMPpix

� �
:

1 One particular concern is artificial oscillation of rainfall occurrence during dry
periods, when Padj;01 < PTRMM < Padj;11 (or Padj;11 < PTRMM < Padj;01).
Assuming rainfall follows the stochastic model described in Sec-
tion 2.1, this procedure allows the bias adjusted distribution of
rainfall to be estimated for all pixels.
2.5. Bias adjustment of time series

A useful application of the bias adjusted distribution of rainfall
obtained in the previous section is its use to correct remotely
sensed time series through quantile mapping. Quantile mapping
is a well established technique (see [12] for a review) that, in the
context of this paper, attempts to find a transformation of XðtÞTRMM ,
the remotely sensed rainfall observation at time t, such that its
new distribution equals the distribution of XðtÞadj, the corresponding
bias adjusted rainfall observation. The distribution of XðtÞTRMM can be
readily characterized from remote sensing observations. The meth-
od presented in Section 2.2.3 provides the bias corrected distribu-
tion of rainfall (i.e the distribution of XðtÞadj). The transformation can
therefore be written as

XðtÞadj ¼ F�1
adj ðFTRMMðXðtÞTRMMÞÞ ð14Þ

where F�1
adjð�Þ is the inverse of the bias adjusted cumulative distribu-

tion function and FTRMMð�Þ is the cumulative distribution function of
remotely sensed rainfall at the considered pixel. FTRMMðXðtÞÞ can be
calculated using the relevant stochastic model parameters obtained
from remotely sensed rainfall by applying the law of total
probabilities:

FTRMMðXðtÞTRMMÞ ¼ ð1� PTRMMÞ þ PTRMM � FTRMM;wðXðtÞTRMMÞ ð15Þ

where PTRMM ¼ P01;TRMM if Xðt�1Þ
TRMM ¼ 0 and PTRMM ¼ P11;TRMM other-

wise; and where FTRMM;wðXðtÞÞ is the cumulative distribution func-
tion of a gamma distribution with rate GRTRMM and shape GSTRMM.
Similarly, the bias-adjusted cdf Fadj can be calculated using the
bias-adjusted stochastic model parameters.

FadjðXðtÞadjÞ ¼ ð1� PadjÞ þ Padj � Fadj;wðXðtÞadjÞ ð16Þ

where Padj ¼ P01;adj if Xðt�1Þ
adj ¼ 0 and Padj ¼ P11;adj otherwise; and

where Fadj;wðY ðtÞÞ is the cumulative distribution function of a gamma
distribution with rate GRadj and shape GSadj. We define the inverse of
Fadjð�Þ as

F�1
adjðY

ðtÞÞ ¼
0 if Y ðtÞ 6 1� Padj

F�1
adj;wðY

ðtÞÞ otherwise

(
ð17Þ

Note that FTRMMð�Þ has a discontinuity at zero. Therefore, its image
does not span all possible probabilities between zero and one (i.e.
values below PTRMM are excluded from the image). When applying
quantile mapping (Eq. (14)) part of the rainfall range is therefore
censored. For example if Fadjð0Þ < 1� PTRMM, all values of XðtÞTRMM will
be mapped to positive rainfall.1 In other words, a dry data point in
TRMM is always matched to the largest rainfall value XðtÞadj that occurs
with the probability FTRMMð0Þ in our model. Of course, any rainfall
prediction below this cutoff would be just as reasonable. To avoid
artificial overestimation of rainfall occurrence, we therefore match
a dry TRMM data point to a random sample from the conditional dis-
tribution Fadjðxjx 6 XðtÞadjÞ, given by

Fadjðxjx 6 XðtÞadjÞ ¼
FadjðxÞ

FadjðXðtÞadj
Þ

if x 2 ½0;XðtÞadj�

1 if x > XðtÞadj:

8<: ð18Þ

This correction ensures that we preserve the actual rainfall distribu-
tion (including rainfall occurrence) for large samples.

To summarize, we first determine which stochastic model
parameters to use according to the season of XðtÞTRMM (Monsoon vs.
dry season) and the rainfall occurrence status at Xðt�1Þ

TRMM (wet vs.
dry). Then,
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� if XðtÞTRMM > 0, we apply Eq. (15) to get the probability of XðtÞTRMM , on
which we finally apply Eq. (17) to get the corresponding quan-
tile in the adjusted rainfall distribution.
� if XðtÞTRMM ¼ 0 we have FTRMMðXðtÞTRMMÞ ¼ PTRMM and are confronted

to the discontinuity problem mentioned above. The case where

F�1
adj ðPTRMMÞ ¼ 0 results in a dry day and XðtÞadj ¼ 0. If

F�1
adj ðPTRMMÞ > 0; XðtÞadj is stochastically determined as a random

draw from the distribution, which cdf is described in Eq. (18).
This is equivalent to the practically more convenient option of
a random draw from the distribution in Eq. (16) with rejection
of samples above F�1

adjðPTRMMÞ.

3. Methods

The methods section describes the metrics used to evaluate the
bias adjustment process of stochastic model parameters described
in Section 2.4, and a Monte Carlo analysis in which the perfor-
mance of the process was tested on synthetic data (Section 3.1).
It then outlines the application of the technique to rainfall data
in Nepal (Section 3.2). As part of this application we characterize
the bias in TRMM observations (Section 3.2.3), and perform a
jack-knife cross validation [25] to assess the performance of the
bias-adjustment technique (Section 3.2.5). Finally, an example of
the application of the adjusted stochastic model parameters to cor-
rect TRMM time series is given in Section 3.2.6. The stochastic
model, bias adjustment methods and time series correction proce-
dure were compiled in an R script [26] and are provided as supple-
mentary material.
3.1. Monte Carlo analysis

To evaluate the performance of the bias adjustment we focus on
the mean absolute errors (MAE) in annual rainfall. The MAE avoids
outlier compensation effects, whereby overestimation at one gauge
may cancel out the underestimation at another (leading to under-
estimation of the true error). The MAE of annual rainfall provides a
scalar performance metric that combines errors in the occurrence,
intensity and seasonality of rainfall and is easily understood in
physical terms. We also compute MAEs for the variance and occur-
rence probability of daily rainfall.

We run a Monte Carlo analysis using synthetic data to evaluate
the properties of our bias adjustment technique and its sensitivity
to a range of characteristics of the gauge network and TRMM
observations (presented in Table 3).

We apply the following procedure to generate a synthetic rain-
fall surface, TRMM data and gauge observations that are represen-
tative of our case study site (Nepal):
Table 3
Experimental variables, their default value and range considered
in the Monte Carlo experiments. fAWNlocal and fAWNobs represent
the standard deviation of local rainfall variations and observation
errors on gauges respectively; N and zmax represent the size and
upper altitude limit of the gauge network; fBIASmean and fBIASrange

the multiplication factors respectively applied on the mean
amplitude and spatial auto-correlation range of the TRMM biases
observed in Nepal.

Variable Default value Experimental range

fAWNlocal 0 0–0.2
N 50 10–1000
zmax 8848 1000–8848
fAWNobs 0 0–0.3
fBIASmean 1 0.5–5
fBIASrange 1 0.01–2
1. The SMP values observed at Nepalese gauges are interpolated
by ordinary kriging onto a 0.05� grid, which is generated from
a high resolution digital elevation model of Nepal [27].

2. Synthetic SMP surfaces are created by adding white noise (with
standard deviation fAWNlocal) to each point of the grid. This
additive noise represents inaccuracies associated with the
interpolation and local rainfall variations that are not captured
by the gauge network.

3. N grid points are randomly selected as ‘rain gauge’ locations.
We control bias in the selection of gauge locations by specifying
an elevation threshold zmax, and forcing all gauges to be located
below this threshold.

4. Random observation errors are simulated by adding white noise
with standard deviation fAWNobs to the SMPs at the synthetic
gauges.

5. Synthetic TRMM data are generated by spatially aggregating
(Section 2.2) the synthetic SMP surfaces at the TRMM resolution
of 0:25� and adding a spatially correlated random bias. The
mean value and spatial correlation range of the bias are pre-
scribed as multiples of the corresponding values observed in
Nepal with multiplication factors fBIASmean and fBIASrange.

6. For each of the ‘real’, bias-corrected and the two control proce-
dures (interpolation of gauges only, or direct use of TRMM
observations only), we also generate a surface of the expected
annual rainfall, which is used as a basis for computing MAE

and evaluating the bias correction technique.

We generate approximately 80 realizations of potential rainfall
surfaces by varying each of the parameters in Table 3 while main-
taining others at the default values listed in Table 3. We assess the
MAE on the annual rainfall in each case. For each set of numerical
experiments, we repeat the Monte Carlo process until the com-
puted MAE becomes insensitive to the addition of further iterations
(i.e. changes by less than 1%). The Monte Carlo estimate of the
mean absolute error on yearly rainfall (MAEMC) is estimated for
the three regionalization procedures: our bias adjustment method,
unadjusted (synthetic) TRMM and interpolated (synthetic) gauges.
In order to compare the robustness of each procedure to changes in
the uncertainty sources in Table 3, we normalized all MAEMC values
by the mean absolute error obtained with the default parameter
values (Table 3). This analysis compares the robustness of the pro-
cedures to uncertainty in the input data, but does not evaluate the
absolute quality of the rainfall predictions obtained by each
method.

3.2. Nepal case study

3.2.1. Study area
We used our proposed bias adjustment technique to correct

TRMMv6 using rain gauge data in Nepal. Nepal lies on an
escarpment bounded by the Gangetic Plain to the south and
the Tibetan Plateau to the north. Its large altitudinal range spans
diverse physiographic regions, from tropical lowlands to high
Himalayan mountains that contain the headwaters of Asia’s ma-
jor river systems and thus water supply for close to 1.4 billion
people [28]. This diversity is reflected in the annual rainfall ob-
served at local gauges, which varies from 200 mm y�1 in the
Trans-Himalayan semi-arid Mustang region, to 4000 mm y�1

100 km further south near the city of Pokhara, upwind of the
Annapurna Range (Fig. 1). We estimated the average annual
rainfall of Nepal as 1750 mm y�1 via Theissen polygon weighting
of gauge observations. Most precipitation occurs during the
Asian summer monsoon (June to September), when the Himala-
yan range intercepts strong easterly winds carrying moist air
from the Bay of Bengal [29]. The precipitation declines towards
the west, reflecting the monsoon circulation. Orography and rain
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shadows affect rainfall in the high Himalayas and the Tibetan
plateau, causing rainfall to also decline towards the north [2].
These regional rainfall patterns reverse in winter (December–
February), when westerly weather systems generate snowfall
preferentially in the high mountains in Western Nepal. Fig. 1
shows the spatial pattern in annual rainfall for 2010 as mea-
sured by the TRMM 3B43 (v6) monthly rainfall product aggre-
gated at the annual scale. At smaller scales, orographic effects
are significant and affect both the spatial and temporal distribu-
tion of rainfall. Daytime rainfall is abundant on ridges, while rain
occurs at night, and in smaller volumes, in the valleys [2].

There have been several evaluations of TRMM rainfall predic-
tions in Nepal. TRMMv6 reliably detects monthly rainfall patterns,
large-scale rainfall patterns and heavy rainfall events in the Hima-
layas [29–32]. At daily time scales, however, TRMMv6 consistently
underestimated rainfall volume along the Himalayan range in Ne-
pal [5,9], while overestimating it on the Tibetan Plateau [10]. A
major revision of TRMM 3B42 (TRMMv7) was released in late
2012. In this revision, satellite observations are adjusted using a
much larger density of rainfall gauges [33]. As discussed in the
introduction, TRMMv6 in Nepal provides us with a barely-cor-
rected satellite rainfall data product, while TRMM v7 provides a
comparison with a more traditional method of bias correction,
allowing us to benchmark our process against a state-of-the-art
bias-adjusted product. We therefore applied the bias correction
techniques to TRMMv6 data, treating TRMMv7 as a validation
dataset for comparison.

3.2.2. Data sources and pre-processing
Gauge data from 192 rainfall stations for the 1969–1995 period

are available from the ‘‘Hindu-Kush Himalayan Flow Regimes from
International Experimental and Network Data’’ (HKH-FRIEND) pro-
jects Regional Hydrological Data Centre [34]. We obtained addi-
tional data from 47 gauges covering a more recent period (1998–
2010) from the Department of Hydrology and Meteorology of Ne-
pal [35]. These gauges are a subset of the 280 gauges used to gen-
erate the gridded GPCC dataset on which NASA calibrates TRMMv7.

We remove all years that were missing more than 10 days of
data and use double mass plots to remove gauges with inhomoge-
neous data. Different datasets collected at identical locations are
merged, generating a final dataset of 114 gauges, with data spans
of at least 10 years. We anticipate that considerable observation er-
ror remains in this dataset, due to (at least) the diverse range of
technologies and data records used at individual gauges. Fig. 1
shows the gauge locations. Gauges are scarce at elevations above
2000 masl and in the mountainous regions of northern Nepal
(Fig. 1).

Remote sensing precipitation data are obtained from NASA’s
TRMM 3B42 v6 and v7 research products [36], and aggregated to
provide daily rainfall estimates between 1998 and 2010. The daily
timescale exceeds the characteristic duration of single rainfall
events [29], allowing us to neglect the internal temporal structure
of rainfall events.

We test for stationarity of the rainfall fields in the subset of
gauges that spanned the whole 1969–2010 period by estimating
the value of each SMP over a moving window of 4 years: about
160 rain events. We regress the estimates of the SMPs against time
and tested the statistical significance of the regression coefficient
with Student-t tests. For gauges where a statistically significant
trend was identified (p < 0.01), we evaluated its impact on the pre-
diction of the annual rainfall over a period of 12 years, which is the
average lag between the end of the gauged record and the begin-
ning of the TRMM datasets. For a trend in the SMP to impact the
prediction of rainfall, it should generate errors in the annual rain-
fall prediction that are comparable to the error associated with the
bias adjustment method (22% over 12 years – Section 4.4.2). The
majority of gauges (75%) do not have a significant trend in yearly
rainfall at the 99% confidence interval. Most (70%) of the gauges
with statistically significant rainfall trends do not generate large
enough changes in SMPs to affect the bias correction. SMP changes
exceeding 22% arose in only 7% of the gauges, mostly on the SMPs
related to conditional rainfall intensity: in these gauges, increases
in the rate parameter of the gamma distribution were offset by de-
creases in the shape parameter, leading to little effect on the ex-
pected value of rainfall. Therefore, using SMPs computed in the
1969–2010 window provide a valid point of comparison to the
SMPs computed from TRMM in the 1998–2010 period in which
the satellite operated.

3.2.3. Stochastic model fit
We fit the 10-parameter stochastic model to daily precipitation

at each gauge and at each TRMM pixel independently. Chi-squared
tests confirm significant differences in the P01 and P11 transition
probabilities, validating the use of a Markov chain model for over
90% of the gauges. Kolmogorov–Smirnov and Anderson–Darling
tests indicate that a gamma distribution provides the best repre-
sentation of conditional daily rainfall intensity during the wet sea-
son and is comparable to alternative distributions (exponential and
log-normal) during the dry season. The calendar days representing
the average start and end date of the monsoon (RnStr and RnStp)
were identified by fitting a step function to the precipitation time
series (Fig. 3). Once calibrated, the overall performance of the sto-
chastic model was evaluated in terms of mean absolute error,
based on its ability to reproduce yearly rainfall as well as the var-
iance and occurrence probability of daily rainfall from the stochas-
tic model parameters.

3.2.4. Bias adjustment performance at gauged pixels
We verify that removing the biases on the SMPs improves our

estimation of the annual rainfall in pixels containing rain gauges.
In these pixels, we (i) aggregate the SMPs observed at the gauges
to the pixel scale, (ii) correct the SMPs of TRMMv6 using these
aggregated values and (iii) evaluate the mean absolute error in
estimated yearly rainfall by comparing the adjusted SMPs to rain-
fall observed at the gauges. The same set of gauges are used to ad-
just and evaluate the procedure: this first evaluation estimates the
combined effects of adjusting the biases in multiple individual
parameters at a point, without assessing the effect of aggregating
and regionalizing the adjustment.

3.2.5. Bias adjustment performance at ungauged pixel
We regionalize the adjustments to ungauged pixels by inter-

polating the SMPs and their biases. We test for spatial trends by
running stepwise multiple regressions of the SMP and their
respective biases against (i) elevation (as a surrogate for oro-
graphic effects), (ii) latitude (as a surrogate for the east–west
rainfall trend we anticipated due to Monsoonal circulation pat-
terns) and (iii) longitude (as a surrogate for the north–south
rainfall trend we anticipated due to rain-shadow effects). The
coefficients resulting from the optimal combinations of covari-
ates that minimized the Akaike Information Criterion [37] were
either not significantly different from zero at the 95% confidence
interval, or orders of magnitude smaller than the intercept,
allowing us to use ordinary kriging to interpolate the SMPs.
The biases in the SMPs were spatially auto-correlated, with
ranges above 50 km for the stochastic parameters and above
25 km for their biases (Table 4).

The performance of the bias adjustment method at ungauged
locations is assessed by comparing its performance to the two con-
trol methods used in the Monte Carlo analysis: (i) the interpolation
of rain gauges and (ii) the direct use of unadjusted TRMMv6. The
predictive performance of these three methods is assessed using



Table 4
Seasonal rainfall characteristics in Nepal and related biases. For each season, columns present the calendar day of season start, the probability of rain, the expected rain on a rainy
day and the expected length of wet (Monsoon) or dry (dry season) spells. For each parameter, the expected value (E) across the gauge dataset, the standard deviation (r) and the
spatial correlation range (Rge) are given.

Season start P (rain) E[rain]jwet day E[wet spells]

E (r) Rge E (r) Rge E (r) Rge E (r) Rge

[Cal day] [km] [–] [km] [mm/day] [km] [day] [km]

Monsoon
Gauge 158 (14) 90 0.65 (0.17) 125 19.42 (6.88) 89 5.74 (4.55) 170
Bias �1 (13) 27 0.09 (0.13) 86 �7.19 (5.12) 54 0.31 (4.24) 179

Dry Season
Gauge 261 (10) 56 0.16 (0.07) 86 11.69 (3.13) 150 11.88 (5.20) 128
Bias 3 (13) 49 0.08 (0.10) 96 �6.98 (2.40) 60 �4.79 (4.51) 124
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two independent validation datasets. (i) TRMMv7, which provides
an external validation set, and (ii) jack-knife resampling of the
ground gauge data, which provides an internal validation set
[25]. The jack-knife procedure was applied to predict the pixel-
scale rainfall characteristics for twenty percent of the 95 pixels
containing rain gauges. A fraction of the remaining gauges was ran-
domly assigned to a training set and used as input for interpolation
and bias adjustment. We repeated the jack-knife resampling pro-
cess approximately 50 times, again terminating the process when
adding another replicate caused a change of less than 1% in the
MAE. We finally computed the jack-knife estimate of the mean
absolute error:

MAECV ¼
1

NCV

XNCV

j¼1

MAEj ð19Þ

where MAEj is the mean absolute error in cross validation round j,
and NCV is the total number of cross validation rounds. MAECV

was estimated for annual rainfall, daily rainfall variance and daily
rainfall occurrence probability. To simulate the effect of gauge net-
work density on the performances of the three interpolation proce-
dures, we varied the size of the training set, keeping the size of the
validation set constant.
3.2.6. Application to the bias correction of time series
We finally illustrate the application of adjusted stochastic mod-

el parameters to correct time series through quantile mapping. The
method was applied on the TRMM time series recorded above
Darchula (1685 masl) a rain gauge location in the hilly region of
western Nepal (Fig. 1 (a)). Although the gauge itself features an
observation period that overlaps the TRMM time series, records
from surrounding gauges were discontinued before the launch of
the TRMM satellite, which illustrates the ability of the proposed
method to use non-overlapping observations for bias correction.
We consider the time series of daily rainfall in September 2005, a
period overlapping both rainfall seasons – on average, monsoon
ends on September 7th at that location. Similar to the cross valida-
tion analysis, stochastic model parameters are adjusted based on
information from the neighboring gauges (i.e. excluding Darchula
– the verification gauge). TRMM time series are corrected using
the adjusted stochastic model parameters as described in Sec-
tion 2.5. The ability of the corrected time series to reproduce the
gauged daily rainfall is then assessed and compared to the perfor-
mance of raw TRMM time series. Finally, for comparative purposes,
we also compute TRMM time series corrected by scaling the
monthly mean to match the (inverse distance weighted) mean
September rainfall observed at surrounding gauges. The latter pro-
cedure is very similar to the bias correction operated by NASA on
TRMMv6.
4. Results and discussion

4.1. Monte Carlo robustness analyses

Results from the Monte Carlo analysis are presented in Fig. 2,
showing the results for the four numerical experiments outlined
in Section 3.1. The outcome of the four experiments was similar:
in all cases, combining the ground and satellite data to estimate
‘‘true’’ rainfall resulted in a product that was more robust to errors
in either data source. For example, Fig. 2(a)–(c) show how the MAE

in annual rainfall estimates responds to different kinds of error
sources that impact uncertainty in the gauge data. Fig. 2(a) illus-
trates the effect of elevation bias in the gauge locations, Fig. 2(b)
shows the effects of observation error at the gauges and Fig. 2(c)
shows the effects of local rainfall heterogeneities. In each case,
and for any given magnitude of the gauge based errors, the MAE

computed from bias-adjusted, regionalized estimates with TRMM
is much less (often approximately 30% less) than the MAE based
on the gauges alone. Conversely, Fig. 2(d) assesses the effects of
bias in TRMM measurements, and demonstrates that combining
gauge data with TRMM stabilizes the MAE in the bias adjusted data
even when TRMM itself is biased. Experiments in which both
observation errors in gauges and biases in TRMM were present
lead to similar results: the bias adjustment method increased the
robustness of the predicted rainfall with respect to the most ex-
treme uncertainty source.

The increased robustness arises due to the near independence
of errors in satellite and ground-based rainfall measurements.
Since there is not a systematic correlation in uncertainty between
these datasets, their joint use stabilizes the bias adjustment meth-
od. The results of the Monte Carlo analysis suggest that the pro-
posed bias adjustment procedure is robust to independent errors
in the satellite and gauge based observations. This separation of
compensating errors is likely to make this data-fusion approach a
generic improvement on single-source estimates.

4.2. Evaluation of TRMM 3B42 v6 in Nepal

We found large bias in rainfall estimates in Nepal made using
TRMMv6. Yearly rainfall was strongly underestimated by the raw
TRMMv6 dataset with a mean bias of �539 mm y�1 over the study
area and a mean absolute error of 580 mm y�1. The 95% confidence
interval around the mean bias was 703 mm y�1, suggesting signif-
icant spatial variation in the bias, as illustrated in Fig. 4. TRMMv6
captures large scale rainfall gradients, but misses variations around
prominent topographic features. For example, in leeward regions
like Mustang TRMM over-estimated the gauged annual rainfall
by over 100% (i.e. a relative bias above 1), while in windward re-
gions like Pokhara TRMM underestimated the gauged annual rain-
fall by more than 50% (i.e. a relative bias smaller �1). These
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Fig. 2. Monte-Carlo simulation of the effects of uncertainty sources on the estimated annual rainfall for the bias adjustment method (squares) and the two control methods:
unadjusted TRMM (triangles) and interpolation from gauges (circles). The vertical axis represents the mean absolute error on annual rainfall, normalized by its value at the
default state described in Table 3. (a) Effect of the systematic selection of low altitude gauges: the x axis represents the lower altitude limit set for the randomly selected
gauge locations; the graph line without point markers and secondary y axis represent the cumulative altitude distribution of the study area. (b) Effect of the variance of the
random observation errors on SMPs observed at synthetic gauges. (c) Effect of the mean amplitude of the TRMM bias. (d) Effect of the variance of local random rainfall
variations occurring at a spatial scale smaller than that being captured by the gauge network.
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Fig. 3. Stochastic rainfall parametrization at a gauge in Western Nepal (Lat:29�280 , Long:80�320 , z = 1266 m). (a) A step function is fitted to the time series of daily rainfall to
determine seasonality. Monsoon starts and ends at calendar days, when the step function is vertical. (b) A two-parameter gamma distribution is fitted on daily rainfall
intensity for each season. The fit on Monsoon rainfall is represented in the figure. (c) The distribution of dry spells (here during the dry season) matches a geometric
distribution with probability PðdÞ01 . (d) The distribution of wet spells (here during the Monsoon) matches a geometric distribution with probability PðwÞ11 .

Fig. 4. Spatial repartition of the TRMM bias on yearly rainfall. The relative bias is
calculated by normalizing the observed bias by the yearly rainfall measured at the
gauge. A relative bias of �1 means that the average yearly rainfall observed at the
gauge is double the value given by the covering TRMM pixel. The large variation and
different signs between Pokhara (P) and Mustang (M), two proximate regions
separated by the Anapurna Range illustrates the effect of rain shadows on the bias.
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observations are consistent with previous observations that
TRMMv6 fails to reproduce orographic impacts on rainfall [4].
The observed clustering of biases around prominent topographic
features leads to spatial heterogeneity in the biases, but also spatial
autocorrelation, facilitating the use of kriging techniques for
interpolation.

The mean, standard deviation and spatial range values for each
of the stochastic rainfall characteristics described in Appendix A
and calculated from the fitted SMPs are shown in Table 4. As
shown, TRMMv6 reproduced the duration of the monsoon well:
it occurred, on average, between June 7th and September 18th.
The beginning and end dates of the monsoon period each had a
standard deviation of approximately two weeks across the region.
During the monsoon, 65% of the days were rainy, with average wet
spells of 6 days. Only 16% of days were rainy in the dry season,
with average dry spells of 12 days. These characteristics were also
reproduced by TRMMv6 with a slight overestimation of daily rain-
fall probabilities. Conditional rainfall intensity was severely under-
estimated by TRMMv6 which found the intensity to be
approximately 50% smaller than that reported by the gauge net-
work. In contrast, [13] found that TRMMv6 under-estimated daily
rainfall probabilities and overestimated the rainfall intensity. We
attribute the differences between the findings of these studies to
a different choice of evaluation metric: rather than evaluating
the TRMMv6 product with respect to point gauge data, [13] com-
pared TRMMv6 to interpolated daily precipitation measurements.
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Fig. 5. Cross validation performances of TRMMv6 (white circles), TRMMv7 (black
circles), gauge interpolation (crosses) and bias adjusted TRMMv6 (crossed circles).
(a) Mean absolute error on yearly rainfall prediction at ungauged location: bias
adjusted TRMMv6 outperforms raw TRMMv6 and gauge interpolation and reaches
the performance of TRMMv7 at gauge densities of 6 gauges per 10,000 km2. (b)
Mean absolute error on the variance of daily rainfall: Correcting TRMMv6 leads to
equivalent performances than TRMMv7 and both datasets outperform TRMMv6. (c)
Mean absolute error on the prediction of the average number of rainy days per year:
Gauges outperform both TRMM dataset and improve the performance of bias
adjusted TRMMv6.
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As discussed in Section 4.4.2, errors associated with spatial inter-
polation of rainfall gauges exceed the error sources in TRMMv6
in regions with low gauge densities. Because of such embedded
interpolation errors, the evaluation of TRMMv6 against gridded
precipitation stemming from interpolated gauge data is
problematic.

4.3. Stochastic modeling of Nepalese rainfall

Applying the stochastic model described in Section 2.1 to rain
gauge data in Nepal lead to a mean absolute error in the annual
rainfall of 7.8 mm y�1 compared to the observed time series –
0.4% of the region’s average annual rainfall of 1754 mm y�1. Evalu-
ating the stochastic model for each TRMM pixel as illustrated for
one gauge in Fig. 3 lead to a mean absolute error of the same order.
These results suggest that despite the complexity of Himalayan
precipitation processes the local daily rainfall was well described
by a simple seasonal parametric model.

4.4. Performance of the bias adjustment method in Nepal

4.4.1. Performance at gauged pixels
Adjusting the SMPs at TRMMv6 pixels that contain gauges (Sec-

tion 3.2.4) reduced the mean error in annual rainfall to �9 mm y�1

(90% CI: 30 mm y�1), effectively eliminating it. The mean absolute
error between gauges and corrected TRMMv6 pixels was reduced
by a factor of 45%, from 580 mm y�1 to 319 mm y�1. The fact that
so much error remains in the MAE indicates significant outlier
compensation effects. That is, the biases are eliminated on average,
but remain locally important.

4.4.2. Annual rainfall at ungauged pixels
Fig. 5 shows the results of the cross validation procedure de-

scribed in Section 3.2.5, which illustrates the ability of the bias
adjustment method to reproduce yearly rainfall at ungauged loca-
tions. Comparing raw TRMMv6 and TRMMv7 to gauges results in
MAEs of 580 mm y�1 and 404 mm y�1 respectively. These values
compare to a MAE of 443 mm y�1 obtained when interpolating
SMPs from all available gauges. Thus, interpolating the existing
gauge network in Nepal outperforms TRMMv6 in the estimation
of local annual rainfall, but is surpassed by TRMMv7. The MAE re-
lated to gauge interpolation increases steadily with decreasing
gauge network density, and exceeds that of the unadjusted
TRMMv6 for densities below 2 gauges per 10,000 km2; that is, an
average distance between gauges of about 70 km. Using all the
gauges in the training set (i.e. 80% of the total number of gauges)
to adjust the bias on TRMMv6 reduced the mean absolute error
in annual rainfall to 391 mm y�1. This represents 22% of the re-
gion’s average gauged rainfall of 1753 mm y�1 estimated through
Thiessen polygons (Section 3.2.1). When considering the perhaps
more accurate measure of average rainfall of 1233 mm y�1 ob-
tained by adjusting TRMMv6 over the whole study area, the rela-
tive error increases to 31%. This includes the effect of errors
related to aggregation and spatial interpolation to ungauged
TRMMv6 pixels.

4.4.3. Decreasing returns to network density
The error curve for the bias adjustment on annual rainfall is

shown in Fig. 5(a). This curve flattens and asymptotes to the er-
ror curve for the TRMMv7 data when all available gauges are
used to correct TRMMv6. This is consistent with the large num-
ber of gauges used by TRMMv7 to adjust the remote sensing
rainfall estimates. The flattening of the error curve leads to
two noteworthy implications. (i) The incremental benefit of add-
ing gauges to the network to adjust TRMMv6 decreases with
increasing network density. The curvature appears to be highest
at a density of about 2.5 gauges per 10,000 km2, where the error
is decreased to 458 mm y�1, that is 36% of the TRMM-adjusted
average rainfall using only 25% of the available gauges. Thus, a
relatively sparse network of gauges, integrated in a bias adjust-
ment procedure based on 10 parameters, efficiently corrects
TRMMv6 and generates performance levels comparable to
TRMMv7. (ii) The hypothetical availability of a dense gauge net-
work e.g. observed data for every TRMM pixel to adjust TRMMv6
would result in a non-zero asymptotic error. Indeed, TRMMv7,
which is calibrated on 280 gauges, does not outperform a bias
adjusted TRMMv6 that uses only 91 gauges. The asymptotic er-
ror of 319 mm y�1 was estimated using the complete set of
available gauges as training and validation sets simultaneously,
overriding the aggregation and interpolation steps of the proce-
dure. This residual error is related to omission of local rainfall
variations by the coarse resolution of the TRMM satellite and
spacing of the Nepalese gauges.
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Fig. 6. Application of the bias-adjusted stochastic model parameters in a quantile
mapping procedure to correct daily rainfall time series at Darchula (1683 masl) in
Western Nepal. The ability of the TRMMv6 time series adjusted with the proposed
method (solid) to reproduce gauged values (shaded) exceeded the performance of
raw TRMMv6 (dashed) and that of rescaled TRMMv6 (dotted) – i.e. adjusted
without stochastic model parameters.
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4.4.4. Rainfall variance and occurrence probability
Fig. 5(b) and (c) show the method’s performance at predicting

rainfall variance and occurrence using the same cross validation
approach as Section 4.4.2. For the variance of daily rainfall, the per-
formance of TRMMv7 was reached by correcting TRMMv6 using a
small subset of the gauge network. Increasing the density of gauges
only slightly improved the performance of gauge-based
techniques.

When considering rainfall occurrence, gauge interpolation out-
performed both TRMMv6 and TRMMv7 by nearly 30%, with an
average error of 21 rainy days per year when all gauges were used.
This is consistent with the fact that the TRMM algorithm calibrates
remote sensing data using observed monthly mean precipitations,
which corrects for average rainfall intensity but fails to adjust
biases on rainfall occurrence. The error curve corresponding to
the bias adjustment procedure follows the curve related to gauge
interpolation, showing that the proposed bias adjustment method
successfully corrects rainfall occurrence. Similar to yearly rainfall,
the error curve on rainfall occurrence flattens, again suggesting
that the incremental benefit of adding gauges to the network to ad-
just TRMMv6 decreases with increasing network density.

4.4.5. TRMMv7 vs. bias-adjusted TRMMv6
Despite the availability in Nepal of high quality TRMMv7 data

that successfully represents annual rainfall, the proposed approach
to correct TRMMv6 finds its usefulness in its parsimony and its
ability to correct hydrologically relevant rainfall statistics using a
much sparser gauge network. Our approach reached the perfor-
mance of TRMMv7 in the prediction of annual rainfall using a small
subset (90 gauges) of the 280 gauges used in the GPCC dataset to
calibrate TRMMv7. Including a stochastic model in the approach
allows the daily rainfall to be corrected by adjusting 10 stationary
parameters, instead of the 144 monthly means calibrated by the
TRMM algorithm for each pixel over a period of 12 years. The pro-
posed method reaches the prediction of rainfall variance and sig-
nificantly improves that of rainfall occurrence in ungauged
locations relative to TRMM v7, using only a subset of the gauges.
Finally, we have shown that our method enables even a sparse
ground gauge network to correct satellite observations to the same
level of accuracy as achieved by monthly-interpolation from a
dense network, suggesting that our approach will have applicabil-
ity in sparsely monitored locations.

4.4.6. Bias correction of time series
Fig. 6 illustrates the use of bias-adjusted stochastic model

parameters to correct TRMM time series through quantile mapping
for September 2005 at Darchula (1685 masl) in Western Nepal. It is
immediately clear from the figure that daily rainfall corrected
through quantile mapping (circles) reproduces well the observed
time series. With a mean absolute error of 8.3 mm over the consid-
ered period, the quantile mapping time series outperforms raw
(dashed) and rescaled (dotted) TRMM with respective mean abso-
lute errors of 9.5 mm and 14.9 mm – though the error of rescaled
TRMM is likely dominated by gross overestimations of storms on
September 15th and 24th.

However, two fundamental limitations of the method are also
visible on the figure. (i) Satellites have a limited ability to detect
small scale rainfall features, such as the fact that the magnitude
of the September 16th storm was lower at the gauge than the pixel
average. This limitation is nonetheless common to most remote
sensing rainfall estimations and not specific to the proposed meth-
od. In fact, unlike mean rescaling, quantile mapping allows repre-
senting decreasing biases with rainfall intensities, which
prevented the overestimation of the storm of September 24th.
(ii) The proposed method addresses the discontinuity of rainfall
distribution around zero by generating adjusted rainfall stochasti-
cally on days when TRMM records a dry day (8 days days in Sep-
tember 2005), if TRMM overestimates rainfall frequency (i.e. if
F�1

adjðPTRMMÞ > 0) like in the considered case. The proposed method
therefore randomly introduces occurrence errors on certain days
(e.g., September 9th), while correcting them others (e.g. September
26th). However, unlike other bias correction approaches, the sto-
chastic method improves the prediction of rainfall frequency,
reducing occurrence prediction errors by about 20% at the consid-
ered gauge for time series duration of 30 days (5 to 4 errors), 1 year
(78 to 57) and 5 years (506 to 401).
5. Conclusion

This study explored the potential for bias correction techniques
based on stochastic rainfall representations to provide spatially
aggregated rainfall data with value for driving hydrological simula-
tions. We have demonstrated that such methods are robust to mul-
tiple sources of error and bias in both satellite and ground-based
observations of rainfall, and provide robust results for gauge den-
sities as low as 2.5 per 10,000 km2. We have illustrated that by sep-
arating out sources of rainfall observation bias which have
different directionalities in different spatial locations, this method-
ology not only provides a reproduction of rainfall totals which
compares to alternative bias correction approaches, such as that
applied by NASA for the TRMMv7 dataset; but actually reproduces
important statistical features of the rainfall time series, notably the
local rainfall variance and rainfall occurrence probabilities, with
greater fidelity than obtained from conventional time series bias
adjustments.

While a fundamental limitation lies in the inability of satellites
to observe small scale rainfall features (a limitation common to
other bias adjustment approaches, as shown by the convergence
of error estimates between the stochastic approach and the
TRMMv7 observations), the proposed method successfully gener-
ates parametric distributions of bias-corrected rainfall using a fi-
nite number of gauges. Useful application of these results include
their use as inputs to frequency domain hydrological models, the
stochastic generation of synthetic rainfall or the correction of re-
motely sensed time series through quantile mapping.

Thus, the stochastic procedure effectively combines satellite
data with sparse rain gauges, providing a robust technique for esti-
mating rainfall properties in minimally-gauged regions, and offer-
ing insight into the minimal rainfall gauge network that could be
reliably used to understand the spatio-temporal variations in pre-
cipitation in mountainous regions.
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Appendix A. From stochastic model parameters to evaluation
metrics

The output of our stochastic model are the 10 parameters de-
scribed in Table 2. Combining these parameters, one can obtain
seasonal metrics such as the unconditional expectation and vari-

ance of daily rainfall (E XðiÞ
h i

;Var XðiÞ
� �

) the expected length of

wet and dry spells (LðiÞw ; L
ðiÞ
d ) and the probability of rainfall occurring

on any given day (PðiÞ). These relationships are listed in Eqs. (A.1)–
(A.5):

LðiÞw ¼
1

1� PðiÞ11

ðA:1Þ

LðiÞd ¼
1

PðiÞ01

ðA:2Þ

PðiÞ ¼ Pi
01

1þ PðiÞ01 � PðiÞ11

ðA:3Þ

E XðiÞ
h i

¼ PðiÞ
GS

GR
ðA:4Þ

Var XðiÞ
� �

¼ PðiÞ
GS

GR2 þ PðiÞð1� PðiÞÞ GS

GR
ðA:5Þ

where the subscript i indicates either the wet (w) or dry (d) season.
By weighing seasonal metrics by the duration of the corresponding
season we get the annual metrics (Lw; P;E X½ � and Var Xð Þ):

P ¼ LRnPðwÞ þ ð1� LRnÞPðdÞ ðA:6Þ

Lw ¼ 1� LRnPðwÞPðwÞ11 þ ð1� LRnÞPðdÞPðdÞ11

P

 !�1

ðA:7Þ

E X½ � ¼ LRnPðwÞ
GSðwÞ

GRðwÞ
þ ð1� LRnÞPðdÞ

GSðdÞ

GRðdÞ
ðA:8Þ

Var Xð Þ ¼ LRn

GSðwÞ

GRðwÞ

 !2

þ ð1� LRnÞ
GSðdÞ

GRðdÞ

 !2

� LRn

GSðwÞ

GRðwÞ
þ ð1� LRnÞ

GSðdÞ

GRðdÞ

 !2

þ LRn

GSðwÞ

GR2
ðwÞ
þ ð1

� LRnÞ
GSðdÞ

GR2
ðdÞ

ðA:9Þ

with LRn ¼ ðRnStp� RnStrÞ=365, the fraction of the year occupied by
the rainy season. Finally, yearly rainfall and the average number of
rainy days per year can easily be obtained by multiplying E X½ � and P
by 365 respectively.
Appendix B. Aggregation of rainfall occurrence probabilities

A pixel is in a rainy state on a given day if it rains at any of its
gauges during that day, which precludes an area weighting ap-
proach from being applied to aggregate rain occurrence parame-
ters. Indeed, let a pixel contain two gauges with equal weights
and rainfall probabilities of 0.1 and 1 respectively: because it rains
every day at one of the gauges, rainfall probability at the pixel level
will be 1, which is not the average of the probabilities at the
gauges.

Assuming a pixel contains Np gauges with rainfall probabilities
Pi , the following bounds apply:

max Pi 6 Ppix 6 min
XNp

i¼1

Pi;1

( )
ðB:1Þ

Ppix reaches the lower bound if the correlation between rain occur-
rence is positive and maximal, i.e. a dry day at the gauge with high-
est P always corresponds to a dry day for the pixel. The higher bond
is reached if the correlation is negative with a maximal absolute va-
lue, i.e. it almost always rains on at least one of the gauges.

In order to satisfy the two degrees of freedom offered by the
two Markov transition probabilities (P01 and P11) considered as
SMPs, a the aggregation of a second metric (other than Pi) must
be considered. The pixel aggregated value of Ppix � P11;pix, the ratio
of a wet-to-wet transitions, is bounded by

max Pi � P11;i
� �

6 Ppix � P11;pix

because such a transition occurring at a gauge is a sufficient condi-
tion for it to be aggregated at the pixel level. Similarly,Ppix � P10;pix,
the ratio of a wet-to-dry transitions is bounded by

XNp

i¼1

Pi � P10;i P Ppix � P10;pix

because such a transition occurring at the gauge level is a necessary
condition for it to be aggregated at the pixel level. Finally, both tran-
sition ratios are bounded by the maximum probability of rainfall
according to inequality (B.1). Therefore, with P11 ¼ 1� P10, the
bounds on P11;pix can be written as:

max
max Pi � P11;i

� �
Ppix

; 1�
PNp

i¼1Pi � ð1� P11;iÞ
Ppix

( )
6 P11;pix

6 min
PNp

i¼1Pi

Ppix

;1

( )
ðB:2Þ

Within these bounds, rainfall probability and the ratio of a wet-
to-wet transitions increase with the pixel size and the number of
gauges within the pixel. The actual value of these metrics depends
on the spatial auto-correlation of rainfall occurrences within the
pixels. If rain occurrence is highly spatially auto-correlated, which
is likely in pixels smaller than the spatial scale of typical rain
events, we can approximate:

Ppix �max Pi ðB:3Þ

P11;pix �max
maxðPi � P11;iÞ

Ppix

; 1�
PNp

i¼1Pi � ð1� P11;iÞ
Ppix

( )
ðB:4Þ

With spatial autocorrelation ranges of approximately 3 (dry season)
to 4 (wet season) times the pixel size of 27.7 km considered in Ne-
pal (Table 4), a Monte Carlo analysis showed that these approxima-
tions lead to an average underestimation of less then 2% for both
metrics for up to five gauges per pixel. This error increases with
the number of gauges and decreases with the range of spatial
autocorrelation.
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Appendix C. Aggregation of conditional rainfall depth
distribution

Consider a square pixel of side d with Np gauges, each covering a
Thiessen Polygon of size ai, where the weights ai are normalized
such that

PNp

i¼1ai ¼ 1. For each gauge i, we have access to daily pre-
cipitation data Xi, as well as the statistics E Xijwet½ � and Var Xijwetð Þ,
measuring the mean and the variance of local rainfall on a rainy
day respectively. Assuming that the precipitation depth on wet
days follows a gamma distribution, these statistics can be straight-
forwardly related to the shape (GS) and rate (GR) of that
distribution:

E Xjwet½ � ¼ GS
GR

Var Xjwetð Þ ¼ GS

GR2

We wish to estimate E Xpixjwet½ � and Var Xpixjwetð Þ, the mean and var-
iance of the areal rainfall on wet days aggregated at the pixel level,
which will lead us to GSpix and GRpix the aggregated parameters of
our stochastic model.

As a first step, we determine the local rainfall at a random point
of the pixel Xpt according a two-step data generating process as
follows:

(i) At the outset, before any measurements are made, a point of
the pixel is chosen uniformly at random. As a result, the area
weights ai measure the probability that this point is located
in Thiessen Polygon i.

(ii) Subsequently, we assume that local rainfall across the entire
Thiessen Polygon is constant and measured by gauge i.

As a result, we can determine the expected unconditional
rainfall at a random point of the pixel using the law of iterated
expectation,

E Xpt½ � ¼ E E Xptji½ �½ � ¼
XNp

i¼1

aiE Xi½ �

Here, E Xptji½ � denotes the expected rainfall conditional on the ran-
dom point being in Polygon i, in which case Xpt is equal to Xi by
assumption. Knowing that the mean value over the pixel area of
all possible realizations of the point process Xpt results in an areal
rainfall process with an identical expectation [22] (i.e.
E Xpix½ � ¼ E Xpt½ �), we can calculate the mean areal rainfall on a rainy
day by applying the law of iterated expectations both at the pixel
level and for each individual gauge,

E Xpixjwet½ � ¼ 1
Ppix

�
XNp

i¼1

aiPiE Xijwet½ � ðC:1Þ

with Pi and Ppix the probability or rainfall at the gauge i and at the
pixel level respectively and represent the expectations of the bino-
mial stochastic processes defining rainfall occurrence at these
points.

For the local variance, the same data generating process implies,
by the law of total variance,

Var Xptð Þ ¼ E Var Xptjið Þ½ � þ Var E Xptji½ �ð Þ

¼ E Var Xið Þ½ � þ E E Xi½ �2
h i

� E E Xi½ �½ �2

¼
XNp

i¼1

aiVar Xið Þ þ
XNp

i¼1

aiE Xi½ �2 �
XNp

i¼1

aiE Xi½ �
 !2
Again, we condition on the polygon i and assume that precipita-
tion is homogenous within each Thiessen polygon (i.e. Xpt ¼ Xi).
From Eq. (C.1), we get:

Var Xptð Þ ¼
XNp

i¼1

aiVar Xið Þ þ
XNp

i¼1

aiE Xi½ �2 � P2
pixE Xpixjwet½ �2 ðC:2Þ

In the next step, we condition on rainfall probability, applying
the law of total variance and taking rainfall occurrence as a bino-
mial random variable:

Var Xið Þ ¼ Var E Xijwet½ �ð Þ þ E Var Xijwetð Þ½ �
¼ Pið1� PiÞE Xijwet½ � þ PiVar Xijwetð Þ ðC:3Þ

Substituting Eq. (C.3) in Eq. (C.2) we have:

ð1� PpixÞPpixE Xpixjwet½ � þ PpixVar Xptjwetð Þ ¼ Pið1� PiÞE Xijwet½ �

þ PiVar Xijwetð Þ þ
XNp

i¼1

aiE Xi½ �2 � P2
pixE Xpixjwet½ �2

Using Eq. (C.1) to express PpixE Xpixjwet½ � and rearranging, we get
the expression for the point variance:

Var Xptjwetð Þ¼
XNp

i¼1

aiPi

Ppix

Var Xijwetð ÞþP2
i E Xijwet½ �2þðPpix�PiÞE Xijwet½ �

h i
�PpixE Xpixjwet½ �2

ðC:4Þ

Finally, following Rodriguez-Iturbe and Mejía [22], we can infer
the variance of area rainfall Xpix from that of the point rainfall pro-
cess Xpt by correcting it with a factor

CðdÞ ¼
Z ffiffi

2
p

d

rðmÞf ðmÞdm 6 1;

where rðmÞ is the spatial correlation function and f ðmÞ the distribu-
tion of distances between two points chosen at random in the pixel.
In other words, Var Xpixð Þ ¼ CðdÞ � Var Xptð Þ, implying that point rain-
fall typically overestimates the variance of area rainfall because
the area averaged intensity of local rainfall events are dampened
by the absence of rain in parts of the pixels that do not fall in the
current extent of the storm. It directly follows that the attenuation
factor CðdÞ is increasing in pixel size d and decreasing in spatial
autocorrelation range. For TRMM pixels in Nepal, where pixel size
and spatial auto-correlation are spatially homogenous, we have
estimated Cð27:7 kmÞ at 0.75 in the monsoon and 0.86 in the dry
season, using a correlogram estimated based on the spatial distribu-
tion of rainfall occurrences at gauges on 2,000 randomly drawn
days. Therefore, we can express the conditional variance of areal
rainfall at the pixel level as a function of the moments of conditional
rainfall measured at the gauges:

Var Xpixjwetð Þ

¼
XNp

i¼1

CðdÞaiPi

Ppix

Var Xijwetð Þ þ PiE Xijwet½ �2 þ ðPpix � PiÞE Xijwet½ �
h i

� CðdÞPpixE Xpixjwet½ �2

Finally, using Eq. (C.1) and rearranging the terms we can write:

Var Xpixjwetð Þ ¼ CðdÞ
Ppix

XNp

i¼1

aiPi Var Xijwetð Þ þ PiE Xijwet½ �2 � PiE Xijwet½ �
� �" #

þ CðdÞPpix E Xpixjwet½ � � E Xpixjwet½ �2
h i

ðC:5Þ

In essence, in order to aggregate point rainfall distribution from
gauges to areal distribution at on the pixel, we first aggregate the
probability of rainfall occurrence Ppix and ratio of wet-to-wet transi-
tions Ppix � P11pix (Appendix B). We use the former to aggregate the
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conditional expectation of rainfall E Xpixjwet½ �. Both parameters are
then used to aggregate the conditional variance Var Xpixjwetð Þ. The
procedure is repeated for both seasons and the four related param-
eters of our stochastic model (P11; P01;GR;GS) are calculated based
on the four aggregated metrics.

For interpolation we assume that the interpolated mean and
variance of conditional rainfall is a linear combination of the corre-
sponding moments of conditional rainfall at the observation
points. This allows us to apply an identical procedure as above,
replacing area weights ai with interpolation weights and setting
CðdÞ ¼ 1, as no point to areal rainfall transformation occurs.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.advwatres.2013.
08.004.
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