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Abstract

Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by

plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant

pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling

approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phy-

tophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil tempera-

tures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates

through host root systems. We apply this model to the southwestern USA for contemporary and plausible future cli-

mate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this

pathogen in the southwestern USA extends over approximately 200 000 km2 under contemporary conditions. While

warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which

the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially

complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with pos-

sible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections

of future pathogen dynamics and ranges should account for multiple pathways of climate–pathogen interaction.
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Introduction

The potential for warmer temperatures to expand path-

ogen ranges and alter epidemiology is an important

consequence of global climate change for human popu-

lations and the environment (Coakley et al., 1999; Cha-

kraborty et al., 2000; Bergot et al., 2004; Boland et al.,

2004; Garrett et al., 2006; Ibanez et al., 2006; Pautasso

et al., 2010). Plant pathogens influence large-scale forest

mortality events, so understanding their future range

and impacts will assist conservation planning (Allen

et al., 2010; Jactel et al., 2012). Plant pathogens also

impact agricultural production, meaning their response

to climate change threatens global and regional food

security (Chakraborty, 2005; Sutherst et al., 2011).

Pathogens are sensitive to multiple climatic and envi-

ronmental factors, as reflected in the ‘disease triangle’

(Agrios, 2005), a conceptual model that states that dis-

ease is the outcome of the presence of a virulent patho-

gen, a susceptible host, and suitable environmental

conditions. Theoretical and empirical studies address-

ing climate change impacts on plant disease tend to

focus on individual environmental factors such as tem-

perature (Chakraborty, 2005; Garrett et al., 2006;

Thompson et al., 2010), elevated atmospheric carbon

dioxide concentrations (Pangga et al., 2004; Lake &

Wade, 2009; Melloy et al., 2010) and water availability

(Desprez-Loustau et al., 2006; Thompson et al., 2013),

despite the likelihood that climate change will alter

temperature, precipitation, potential evaporation, and

ecological regimes simultaneously. Retrospective

analyses show that multiple environmental drivers and

their interactions influence expansion of disease ranges

(Fabre et al., 2011; Pangga et al., 2011). Understanding

these interactions remains an area of outstanding

research need (Chakraborty, 2005; Pautasso et al., 2012).

Climatic and edaphic factors could limit Phytophthora

cinnamomi (Pc) range in several ways. First, Pc is sensi-

tive to cold temperatures (approaching freezing). Expo-

sure to sufficiently cold temperatures for sufficiently

long durations during winter will kill Pc (Marc�ais et al.,
1996). Temperatures warm enough to permit survival

of Pc may still be cold enough to suppress its ability to
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grow, reproduce, and cause disease to hosts (Zentmyer

et al., 1976; Shearer et al., 1987). Previous modeling

studies considering temperature effects on Pc range in

Europe suggest the potential for considerable expan-

sion in warming climates (Brasier & Scott, 1994; Bergot

et al., 2004). However, Pc growth rates also display a

threshold-like response to soil moisture in laboratory

conditions. Dry soils also inhibit reproduction, survival,

dispersal, and development of symptoms in host plants

(Hwang & Ko, 1978; MacDonald & Duniway, 1978;

Nesbitt et al., 1978; Malajczuk & Theodorou, 1979;

Benjamin & Newhook, 1981; Tippett et al., 1987, 1989).

Soil moisture conditions experienced by the pathogen

themselves arise from interactions among the precipita-

tion regime, soil depth, drainage, and atmospheric

evaporative demand, and thus reflect the interplay of

edaphic and climatic conditions. Finally, Pc disease is

also often suppressed in rich soils where organic matter

content exceeds �5% (Broadbent & Baker, 1974; Nesbitt

et al., 1979), probably because of predation by other soil

organisms in the diverse microfaunal communities

sustained in these soils (Weste & Marks, 1987).

Projections of potential future risk therefore require

techniques to assess the impact of multiple environmen-

tal changes and their interactions on pathogen range and

epidemiology. Here, we apply a mechanistic modeling

approach to explore how climate change could impact

pathogen range and activity. We explore how simulta-

neous changes in temperature, precipitation, snow-pack

extent, and evaporative demand might impact the range

of a well-characterized pathogen under different climate

scenarios. To do this we couple two existing models that

describe controls on the range of the generalist root path-

ogen Pc in the state of California and surrounding

regions in the states of Oregon, Nevada, and Arizona in

the southwest USA. Pc occurs in this region (Tidwell

et al., 1984; Swiecki et al., 2003; Garbelotto et al., 2006;

Chavarriaga et al., 2007; Pagliaccia et al., 2011, 2013) but

its range is poorly delineated. In other warm climates

such as southernAustralia andHawaii, Pc has had a dev-

astating effect on timber production, natural forests and

agriculture (Newhook & Podger, 1972; Hwang & Ko,

1978; Weste & Marks, 1987; Balci & Halmschlager, 2003;

Harham, 2005; Judelson & Blanco, 2005; Benson et al.,

2006; J€onsson, 2006). Modeling the climatic and edaphic

limits on its potential range in theUS southwestwill help

determine the risks posed by this pathogen, particularly

since there is not as yet a detailed understanding of the

susceptibility of native species to Pc infection.

Our modeling study aims to address two research

questions:

1. How do climate and edaphic factors limit the poten-

tial range of Pc in the southwestern USA under

climatic conditions representative of the late 20th

century (baseline conditions)? and

2. How do the different modes of Pc response to tem-

perature and soil moisture change this projected

range under plausible future climate scenarios?

Recognizing that observations of Pc in the region pro-

vide an incomplete delineation of the full potential Pc

range, we nonetheless compare the location of known

sites of Pc infection in California to the model predic-

tions, as the most feasible check on the consistency of

the model with observation.

Materials and methods

To address the research questions, we link two existing mod-

els that describe: (i) Pc winter survival probabilities and (ii) Pc

disease severity during the spring growing season (when Pc

typically expands through the root system of host species in

Mediterranean climates such as those in the southwestern

USA; Weste & Marks, 1987). We first model winter soil tem-

peratures. Second, we use the modeled soil temperatures to

estimate Pc survival with an existing, validated survival

model (Marc�ais et al., 1996). Next, we expand a probabilistic

soil moisture model to account for snowpack contributions.

We use the projected soil moisture fluctuations to drive a sto-

chastic pathogen risk model, previously employed to describe

disease range, relative risk on different soil types, and

response to different irrigation regimes at sites in Western

Australia and Oregon (Thompson et al., 2013). The output of

this model is a metric of the likelihood of disease expansion

throughout a hosts’ root system, lying between 0 (no Pc in the

root system) and 1 (complete colonization of the root system).

Fourth, we identify regions with high soil organic content

from the national State Soil Geographic Database (STATSGO)

and Soil Survey Geographic Database (SSURGO) data sets and

exclude these regions from the potential Pc range (Scharwz &

Alexander, 1995). Finally, we compute a relative Pc risk as the

product of the risk of winter survival, absence of suppressive

(organic) soil conditions, and moisture-controlled host coloni-

zation. We apply this modeling framework to baseline

(approximately year 2000) and future (approximately year

2050) climate scenarios across the southwest USA. We repeat

the analyses using high resolution downscaled climate and

soil data for the San Francisco Bay Area (Flint & Flint, 2012),

allowing us to explore the effects of microtopography, orogra-

phy, and fine-grained changes in soil properties, typical of the

California coastline, on the spatial patterns of Pc disease risk

and its projected climate sensitivity.

Data sources

We use three different climate datasets: (i) monthly regional

historical climate observations interpolated to a 140-km2 grid

for the 1950–2000 period (Maurer et al., 2002); (ii) bias-cor-

rected and spatially downscaled National Center for Atmo-

spheric Research Community Climate System Model 3.0
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2 S . E . THOMPSON et al.



(Collins et al., 2006) monthly simulations run for the IPCC A2

(medium-high emissions) and B1 (low emissions) climate sce-

narios on the same 140 9 140 km grid (Cayan et al., 2009; van

Vuuren et al., 2011); and (iii) 30-year average monthly projec-

tions from the Geophysical Fluid Dynamics Laboratory cli-

mate models for the same scenarios, downscaled to a high

resolution (270 9 270 m) grid over the San Francisco Bay area

(Flint & Flint, 2012) for the 1970–2000 and 2035–2065 periods.

To obtain representative climate characteristics, we average

the monthly regional data over 10 year intervals (1990–2000

and 2045–2055). The climate components obtained for each

dataset are summarized in Table 1. We estimate average daily

temperature for the Bay Area climate surfaces as a simple

mean of monthly maximum and minimum temperature; and

estimate the potential evaporation at the southwestern US

scale using the Priestly–Taylor equation.

One of the limitations of this approach lies in the consider-

able uncertainty surrounding the use of downscaled climate

datasets. Our goal in using these high resolution data sets was

to: (i) develop a reasonable baseline drawn from interpolated

observations and (ii) compare this against plausible climate

futures to elucidate the range of potential Pc responses and

how they could manifest themselves at regional scales. We do

not interpret these future cases as predictions or forecasts, but

illustrative scenarios to offer insight into process interactions.

Regional soil data, specifically percentage clay, organic mat-

ter content and soil depth data are derived from STATSGO

(Scharwz & Alexander, 1995). Soil data for the Bay Area are

obtained from the SSURGO datasets (Staff, 2012). Both data

sets derive from soil maps with irregular mapping units rang-

ing from <1 ha in size to >20 000 ha (e.g., for large, homoge-

neous areas such as the submerged portions of San Francisco

Bay). The soil data were thus mapped to the climate grid

scales used for both the Bay Area and the regional scale. We

use tabulated hydraulic parameters (Clapp & Hornberger,

1978) to estimate the properties of the water retention curve

for each soil type on the basis of the percentage clay content,

classifying <10% clay soils as sands, 10–15% clay content as

loamy sands, 15–20% clay contents as sandy loams, 20–40%

clay content as loams and >40% clay contents as clays. Geore-

ferenced locations where Pc has been isolated from natural or

agricultural soils in California were obtained from the

Phytophthora Database (www.phytophthoradb.org), Forest

Phytophthoras of the World (www.foresphytophthoras.org),

and recent literature sources (Jacobs et al., 1997; Elliott et al.,

2010; Swiecki et al., 2011).

Winter survival modeling. Marc�ais et al. (1996) showed that

winter survival of Pc declines as the duration of exposure to

sub-zero temperatures increases, according to the relationship:

I ¼ 1� 1

1þ 14:7� expð0:007PT\0Þ ð1Þ

where ΣT<0 represents the sum of hourly temperatures below

0 °C. Model validation showed that survival projections of

50% or greater corresponded to increases in disease symptoms

in 86% of monitored stems, and no reductions in disease. Con-

versely, lower survival projections lead to reductions in dis-

ease symptoms or healing of previous wounding (Marc�ais
et al., 1996). We therefore take survival projections of 50% or

greater as providing an indication of plausible disease range

as constrained by winter temperatures. To determine Pc expo-

sure to these temperatures requires: (i) modeling soil tempera-

ture fluctuations with depth and (ii) estimating the maximum

depth at which Pc occurs.

Several models have been proposed to estimate soil temper-

ature dynamics using typical spatial datasets (Zheng et al.,

1993; Kang et al., 2000). We use a recent version of these mod-

els that accounts for shading of the soil surface by vegetation

and insulation of the soil surface by snow (K€atterer & Andr€on,

2008). This model predicts T (z,t) the temperature of the soil at

depth z and time t, as:

TtðzÞ ¼ Tt�1ðzÞ þ ðTsurf � Tt�1ðzÞÞ � exp �z
p
Ksp

� �1=2
 !

� expð�klbLAItÞ: ð2Þ
where Tsurf is the surface temperature, Ks is the thermal diffu-

sivity of the soil, p is a characteristic timescale of thermal fluc-

tuations (in this case equivalent to the number of hours in

1 year), klb is the absorption coefficient associated with soil

shading, and LAI is the leaf area index of local vegetation.

We assume that during winter, the surface temperature is

given by the measured air temperature, that is, Tsurf = Tair,

except where a snow-pack is present to insulate the soil from

air temperature fluctuations. We treat a monthly snow-water

equivalent (SWE) >5 mm as indicating a persistent snowpack.

In these cases, we follow K€atterer & Andr€on (2008) in taking

Tsurf = 0.2Tair. Unfortunately, validation data for snow-cov-

ered surfaces are not available in the study region. The 20%

factor was, however, extensively validated by K€atterer &

Andr€on (2008) in Europe.

Soil thermal diffusivity ksp is computed with the methods of

Peters-Lidard et al. (1998) (details in Appendix) using the

mean soil moisture values computed in Section Pc - soil mois-

ture model to give the percentage saturation of the winter

soils. We calibrate the absorption coefficient klb for the soil

Table 1 Data obtained for the regional and local climate

characterization under baseline and future scenarios (Collins

et al., 2006; Cayan et al., 2009; van Vuuren et al., 2011; Flint &

Flint, 2012)

Scale Datasets Years

Local Temperature

(monthly max and min)

1970–2000,

2035–2065

Potential evaporation

(monthly mean)

Precipitation (monthly mean)

Regional Temperature (monthly mean) 1990–2000,

2045–2055Net radiation (monthly mean)

Relative humidity

(monthly mean)

Snow water equivalent

(monthly mean)

Precipitation (monthly mean)

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12463
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temperature model using data from 16 California Irrigation

Management Information System (CIMIS) stations (http://

wwwcimis.water.ca.gov/cimis/) spanning northern to south-

ern California and representing coastal and interior sites.

These stations report temperature data at 15 cm depth, over a

12-year timeframe (2000–2012). Assuming a reference LAI of 3

(K€atterer & Andr€on, 2008), klb is calibrated by minimizing the

mean absolute error in winter temperatures for all 16 stations

(see Table 3), obtaining klb = 0.96.

Finally, we assume that during winter Pc organisms would

preferentially migrate to deep soils that provide a thermal buf-

fer against air temperature fluctuations. Although Pc is typi-

cally located in shallow soils with high plant root densities

(Weste & Law, 1973), it has also been found at depths of up to

75 cm below the surface, when these soil conditions were

more suitable for its growth, reproduction and survival (e.g.,

Shea et al., 1983). We therefore compute the winter soil tem-

perature profiles at the either the maximum soil depth or

75 cm depth, whichever is smaller, and insert these values

into Eqn (2) to estimate Pc survival risk.

Pc - soil moisture model. Thompson et al. (2013) developed a

stochastic model to relate Pc establishment risk to soil moisture

dynamics (the mathematical details of this model are presented

in expanded form in the Appendix). The stochastic soil mois-

ture model of Laio et al. (2001) and its crossing properties as

identified by Porporato et al. (2001) were used to estimate the

frequency with which soil moisture conditions (represented by

s, the relative moisture content, equivalent to the volumetric

water content normalized by the soil porosity) fluctuate around

a ‘critical’ matric potential (or equivalently a critical soil mois-

ture, sc). If the critical potential Ψc is set to the value at which

dry soils inhibit Pc growth (approximately �3000 kPa in sterile

laboratory media; Malajczuk & Theodorou, 1979) then these

fluctuations represent transitions from conditions that allow Pc

growth to conditions that promote host recovery.

There are two challenges in applying Laio’s soil moisture

model to the US southwest. The first is that rainfall along the

US west coast is often more autocorrelated than assumed by

Laio et al. (2001). The second is that interior and montane loca-

tions receive snow as well as rainfall, and that sustained snow

melt provides an important contribution to local soil moisture

dynamics.

We address the first of these challenges by noting that in a

comprehensive sensitivity analysis of the Pc risk model used

here, Pc risk was near-constant along contours of equivalent

mean monthly rainfall (Thompson et al., 2013). Pc risk is thus

insensitive to the details of rainfall arrival at daily timescales,

including deviations from a Poisson-process. This finding also

allows us to directly use model data that forecasts monthly

scale rainfall, without having to assume a model for the rain-

fall occurrence rates and depths. Throughout, therefore, we

assume a rain-day frequency of k = 0.3 (i.e., one rainy day in

every 3 days), and estimate the average rainfall depth as

a ¼ P=k where P is the mean daily rainfall estimated from the

monthly climate data.

In the absence of snow, the soil moisture probability density

function (PDF) is estimated as a function of precipitation rate

and depth (constrained to match the monthly precipitation

totals), potential evaporation, soil depth, and soil properties,

directly following the mathematical formulation in Laio et al.

(2001). The presence of a snowpack invalidates this approach

by generating a long transient condition which cannot be cap-

tured by the steady-state approximation used in deriving the

PDF when soil moisture is controlled by rainfall. It is clear that

if persistent snow-melt occurs then soils will be saturated, that

is, s = 1 during the spring period when a snow-pack is in

place. The simplest, and not far-from realistic approach is to

assume that in any pixel containing a snow-pack with SWE

>5 mm, s = 1, and that the probability of this saturated condi-

tion occurring throughout the spring period is equal to P

(s = 1) = ΣMSWE>5 mm/ΣMSpring, where MSWE>5 mm indicates

the number of months where a snowpack was present, and

MSpring indicates months in the Spring period. The remainder

of the PDF is given by the precipitation-driven soil moisture

conditions, weighted by 1 � P (s = 1). Effectively, this approx-

imation represents the transient conditions of dry-down of the

soil following melting of the snowpack, modified to account

for the probability mass at s = 1. For the purposes of con-

straining the Pc dynamics, the dynamics of this transient con-

dition are not critical, since the snowpack maintains soil in a

wet condition that supports Pc growth during the period after

snowmelt. Thus, this approximation is suitable for the

purposes of Pc range determination.

Independently from the soil moisture PDF, the model incor-

porates a biological component that describes a simplified

host–pathogen interaction. If we assume that the soil water

potential exceeds Ψc, the pathogen colonizes the root zone of

the host plant at a rate rmax. A healthy host has root volume v

which is equal to its upper limit vmax. Infected roots eventually

die, so that in an infected tree, the volume of colonized roots b

lies between 0 (uninfected host) and vmax (root system com-

pletely colonized). Hosts with high resistance to Pc regrow

roots rapidly or resist infection at a rate m (Newhook & Pod-

ger, 1972; Weste & Taylor, 1987), leading to a reduction in b. In

dry soils, the rate of Pc growth is impeded to a ‘drought’ rate

rmin, during which time the host will tend to recover. These

dynamics can be expressed in a one-equation non-dimen-

sional model (Thompson et al., 2013), which reproduces the

dynamics of a more complete two-equation susceptible-

infected (SI) disease model. Here, B = b/vmax, t′ = tm,

Rmax = rmax/m and Rmin = rmin/m, so that the final growth

equation takes the form (Thompson et al., 2013):

dB

dt0
¼B R Wð Þ � 1� Bvð Þ;

R Wð Þ ¼Rmax; W[Wc

¼Rmin; W�Wc

ð3Þ

The power v in this equation is set to 100 for computational

purposes: this provides a close approximation to a stepwise

function in which pathogen colonization rates remain constant

until the whole root zone is colonized, and then switches to

zero. Provided Rmin < 1 and Rmax > 1, the steady state condi-

tion of this equation switches when soil is wet (B = 1, the

whole root zone is colonized by Pc) and when soil is dry

(B = 0, no pathogen remains in the system). This satisfies the

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12463
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conditions for applying an analytical solution for the steady-

state PDF of the pathogen extent B as derived by Horsthemke

& Lefever (1984). As shown in Thompson et al. (2013), this

steady state PDF has the form:

p Brð Þ ¼ �N0 Rmax � Rminð ÞBa1 1� Rmax þ Bnð Þa2 1� Rmin � Bnð Þa3
ð4Þ

where

a1 ¼ � 1þ fþ

Rmin � 1
þ f�

Rmax � 1

� �

a2 ¼ f�

n Rmax � 1ð Þ � 1

a3 ¼ fþ

n Rmin � 1ð Þ � 1

ð5Þ

for B 2 [0,1], where f+ and f� are the frequencies of switching

around the sc condition (and can be obtained directly from the

PDF of s as shown in Porporato et al., 2001), and N′ is a nor-

malization constant chosen such that
R1
0 pðBÞdB ¼ 1. The

expectation of B, B can also be computed analytically from the

soil, climate and pathogen parameters, and provides a parsi-

monious metric of the risk posed by Pc for a given set of envi-

ronmental and host conditions.

This model allows estimation of the probability of Pc infect-

ing its hosts’ root zone as a function of soil properties, rainfall

statistics and vegetation type. The model was validated for

two case studies in Western Australia and one agricultural case

study in Oregon. Because the long history of Pc in Western

Australia (over 100 years; Shearer et al., 2004) has allowed the

pathogen to spread extensively, and because it has received

detailed attention there and in agricultural settings, the case

studies provide a more comprehensive opportunity to validate

the ecohydrological model than the comparison with Califor-

nian data made in this study. Therefore, we briefly report the

findings from these three case studies: (i) all 27 locations with

established Pc disease reported by the Centre for Phytophthora

Science and Management (http://www.cpsm.murdoch.edu.

au/), across the approximately 1000 km by 1000 km south-

western region of Western Australia coincide with regions

where B� 0:5, and 23 of 27 occur in regions where B� 0:8, sug-

gesting a rate of Type 2 (predicting no Pc when Pc was in fact

present) errors in the range of 0–15%; (ii) examination of dis-

ease frequency on contrasting soil types in an intensively mon-

itored Pc affected 5 95 km forest plot (Batini & Hopkins, 1972)

lead to a model prediction that Pc would occur two times as

frequently on clay soils than on sandy soil; observations

showed that Pc actually occurred 1.9 times as frequently on

clay soils than on sandy soils; and (iii) Finally, the model repro-

duced the near-linear increase in Pc disease severity from 20%

to 60% root destruction on irrigated blueberries as the irriga-

tion rate was increased from 0.5 to 1 to 1.5 times evaporative

demand (Bryla & Linderman, 2007). Details of these validation

exercises are reported in Thompson et al. (2013).

Application to the southwest USA

The southwestern USA contains a climatically, geologically,

and biologically diverse set of landscapes (Torregrosa et al.,

2013). Climatically, the region encompasses cool, humid, oce-

anic climates near the coast, arid interior valleys and deserts

with continental climates, and montane and nivial uplands in

the Sierra Nevada mountain ranges. Precipitation tends to be

highly seasonal with the majority falling during a 4-month

period from December to March. The diversity of climatic

types is reflected in the diversity of terrestrial vegetation,

with important vegetation communities including coastal

rainforests, dry chapparal, Mediterranean oak savannas,

montane forests, and subalpine regions (Barbour et al., 2007).

Within the study area, the California Floristic Province is rec-

ognized as a biodiversity hotspot (Myers et al., 2000), and the

state is home to over 7600 plant species (Baldwin et al., 2012).

The San Francisco Bay Area, which is used as a higher resolu-

tion case study maintains much of the same complexity of cli-

mate, geology, and biology, due to strong ocean-inland

gradients in temperature and annual precipitation (Gilliam,

2002), and the activity of various tectonic faults in the region

(Sloan, 2005).

The diversity of climate and soil types in the study area

can be directly parameterized within the stochastic soil mois-

ture and pathogen models. Note that we have allowed spatial

variations in evaporative demand to be driven by radiation,

temperature, and humidity (via the Priestly–Taylor equation),

and have not incorporated an explicit treatment of varying

vegetation cover on Emax. The rationale for this lies in the fact

that surface conductance (the physical term describing the

effect of leaf area on evapotranspiration) loses sensitivity to

LAI for low humidity (characteristic of the region) and

LAI > 2, suggesting that the first order controls on Emax vari-

ation lie in energy limitation rather than vegetation character-

istics (Leuning et al., 2008). The diversity of the vegetation

also presents a challenge for parameterization of the patho-

gen dynamics in the model. It is clearly not feasible to param-

eterize specific host resistance terms for Pc for all 7600

vascular plant species in the study area; furthermore assess-

ments of susceptibility of the native vegetation to Pc are strik-

ingly incomplete, and remain insufficiently quantitative to

allow a direct comparison to be made. The problem is similar

to applying this model to Pc in Western Australia, where far

more work on Pc susceptibility has been performed. In that

comparably biodiverse landscape, 3084 of the 5710 native

plant species were found to be susceptible or highly suscepti-

ble to Pc infection (Shearer et al., 2004). This determination,

however, required intensive surveys of native vegetation in

representative habitats, as well as comparative inoculation

greenhouse trials (Shearer et al., 2004), and still provides only

qualitative information about the relative vulnerability of host

plants. No comparable investigations have as yet taken place

in the US south west, although numerous common native

species are known to be vulnerable to Pc, including manza-

nita species (Swiecki et al., 2003), chapparal species (e.g.,

Ceanothus sp.), Monterey pine, sycamore, western sword fern,

coast live oak (Farr & Rossman, 2013), bay laurel and

madrone (Fichtner et al., 2010). In the absence of detailed

observations of host–pathogen interactions for the diversity

of species in Western Australia, we explored climate limita-

tions on range using a combination of: (i) laboratory estimates

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12463
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of Pc growth rates in sterile media and (ii) host resistance

parameters (m) taken from a moderately susceptible host (the

eucalyptus species Jarrah, Eucalyptus marginata) and esti-

mated to be 0.1 day�1 (Thompson et al., 2013). We have

repeated this approach for the US southwest with the follow-

ing rationalizations: (i) moderately susceptible host dynamics

ensure that climate effects are clear. For highly susceptible

hosts, climatic drivers are relatively unimportant, since any

serendipitous infection is likely to lead to mortality. For

unsusceptible hosts, climate is equally unimportant. Thus to

explore the impacts of climate change, moderately susceptible

host assumptions are sensible; (ii) Evidence from infections of

common tree species (oaks, laurels, madrone) suggests that

the hosts are indeed moderately susceptible to Pc, with infec-

tions most common in wet areas (Garbelotto et al., 2006;

Fichtner et al., 2010) and mortality commonly associated with

concurrent pest or drought stress (Fichtner et al., 2010); (iii)

for the sake of identifying climate sensitivity specifically,

holding host vulnerability constant across the study area pro-

vides a useful control, and in the absence of more detailed

information, is the most parsimonious modeling approach.

As a check on the impacts of this assumption, we have also

evaluated the sensitivity of the model results to a doubling or

halving of host resistance.

The biological parameters Rmax and Rmin were estimated

from the assumed value of m = 0.1 and laboratory observa-

tions of rmin and rmax. Pc growth rates in sterile media at 25 °C
were 0.46 day�1 under well-watered conditions (rmax), and

0.07 day�1 under dry conditions (rmin) (Malajczuk & Theodo-

rou, 1979). Because the US southwest contains a large range in

temperature due to strong marine effects near the coast, conti-

nentality inland, and large mountain ranges, we extended the

definition of rmin and rmax to incorporate temperature depen-

dence. Shearer et al. (1987) noted that growth rates of Pc var-

ied linearly with temperature, and found that growth declined

to zero at T = 4.9 °C. We therefore fit linear relationships

between the values of rmin and rmax obtained by [45] at 25 °C
and assumed values of 0 at T = 4.9 °C, obtaining:

rmax ¼ �0:1122þ 0:023T; ð6Þ

rmin ¼ �0:171þ 0:0035T; ð7Þ
where T is the ambient temperature experienced by Pc in °C
and is assumed here to be equal to the average air tempera-

ture.

We force the modified Laio model (Section Pc - soil mois-

ture model) with the data outlined in Data Sources section and

Table 1 estimate the soil moisture PDF. The contribution of the

climate factors to the development of a mean soil moisture

map for the region is illustrated in Fig. 1. We then estimate

the biological parameters using the different surface tempera-

ture conditions. Then, we estimate the PDF of the Pc coloniza-

tion extent with Eqn (4). We interpret the mean colonization

extent as being proportional to the risk posed by Pc to host

vegetation during its most active period in spring. We com-

pute this risk during 2–3 month periods in spring: March to

May and April to June, recognizing that warmer temperatures

for the later period might be offset by reduced water availabi-

lity, and vice versa, and take the total risk as the maximum

experienced at any pixel during these two periods.

Risk estimates

In addition to spatially distributed estimates of the mean Pc

colonization extent (RiskRainfall) and survival probability

(RiskWinterSurvival), we also generate a surface, RiskSoil account-

ing for the effect of soil type on Pc risk. On the basis of litera-

ture thresholds for organic matter content in soils that

suppress or do not suppress Pc, we set RiskSoil = 1 in soils

where organic matter content was less than 5%, and

RiskSoil = 0 for higher organic matter soil types (Broadbent &

Baker, 1974; Nesbitt et al., 1979; Weste & Marks, 1987). This

surface thus allows us to account for the dramatic reduction of

Pc risks on organic-rich soils. In practice, however, the extent

of these soil types in the study area was limited: less than 1%

of the terrestrial soils in the Bay Area were suppressive by
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Fig. 1 Climatic factors that contribute to the soil moisture probability density functions (PDFs) across the state for the 1990–2000 cli-

mate conditions, averaged for the March to May period. Panels show the climatic components that contribute to the potential evapora-

tion [temperature (T), relative humidity and net radiation], the resulting estimate of potential evaporation (mean EP) using the

Priestly–Taylor equation, and the March snow-water equivalent (SWE). The panel on the right indicates the computed mean soil mois-

ture (derived from full PDF estimates for each pixel) for the same period. There is a clear contribution of snowmelt that increases soil

moisture toward saturation in the presence of snow cover. Desert features such as California’s Central Valley and Arizona’s deserts are

clearly distinguished by the low soil moisture probabilities. Fine-scale variations in predicted soil moisture content also arise due to

spatial differences in soil depth and clay content.
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these metrics, and less than 2% of the soils in the whole study

area. Thus, controls on Pc due to organic soils were limited.

To develop a metric of the total risk, we simply take the

product of the three risk components:

RiskTotal ¼ RiskRainfall � RiskSoil � RiskWinterSurvival ð8Þ
Areas where Risk ⟶ 1 have suitable thermal, moisture and

soil organic matter conditions to support Pc. Areas where Risk

⟶ 0 are inhibited by spring being too dry, winter being too

cold, the soil being too rich or a combination of these factors,

and are thus at low risk of Pc infection. Based on our previous

analysis of Pc distribution in Western Australia, where Pc risk

was solely controlled by water availability (i.e., Risksoil = 1

and Risksurvival = 1), Risk � 0.5 delineates the limits of the Pc

range. We then compare the projected risk maps for contem-

porary conditions in the southwest US and the Bay Area to the

observed locations of Pc infection. Although these compari-

sons cannot identify false positives (regions where the model

over-predicts the Pc risk), it does allow us to identify false neg-

atives (i.e., regions where the model underestimates Pc risk).

Results

The model results are presented graphically in Figs 2

and 3 for the southwestern USA and for the Bay Area,

respectively, for all climate scenarios. The spatial ranges

over which there is an increase/decrease in Pc risk due

to winter survival and spring Pc activity are also shown

in Table 2. These results are discussed below in the

light of the two guiding research questions.

How do climate and edaphic factors limit the potential
range of Pc in the southwestern USA under
contemporary conditions?

Winter survival. Predictions of winter survival of Pc are

contingent on the performance of the soil temperature

model. The error statistics for its application to the 16

CIMIS stations are shown in Table 3. The mean abso-

lute error is 1.7 °C, and the mean total error is (�0.6 °).
These errors lead to uncertainty in the projected winter-

survival range of approximately �3.5%, suggesting that

the survival model predictions are robust to the error in

the temperature model. This robustness reflects the fact

that the survival probabilities depend on both thresh-

old dynamics and cumulative temperatures. Absolute

errors in temperature model predictions therefore tend

to compensate for each other in the survival model.

Winter survival predictions for the whole southwest

area are shown in the top row of plots in Fig. 2 and are

listed in Table 2. Under contemporary conditions, win-

ter survival is plausible over an approximately

536 000 � 18 000 km2 area, or 43 � 1.5% of the region.

Applying the soil temperature model to the Bay Area

indicates that 100% winter survival is likely under

current conditions, which generate only occasional sub-

zero temperatures.

Soil moisture and pathogen activity. The predicted Pc risk

based on its spring activity is illustrated in the second

row of plots in Fig. 2 and is listed in Table 2. The spa-

tial pattern of elevated Riskrainfall reflects both the pat-

tern of soil moisture availability and of spring

temperatures (illustrated in Fig. 1). Approximately

327 000 km2 of the study area (26%) is sufficiently

warm and wet during the spring to support a high level

of Pc activity.

In the San Francisco Bay Area, the pattern of RiskTotal
exhibits fine-scale spatial heterogeneity, which, given

the low occurrence of organic soils and the 100% winter

survival rate, may be attributed to fine-scale heteroge-

neity in RiskRainfall (see Fig. 3). Much of this heteroge-

neity arises due to highly variable spatial soil

properties. The major soil types follow a strongly aniso-

tropic pattern in parent material that is aligned along

the northwest–south-east direction of the major tectonic

faults that occur in the region. Layered onto this hetero-

geneity is a markedly orographic rainfall pattern, with
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Fig. 2 The contributing, climate-driven and cumulative risk fac-

tors for Phytophthora cinnamomi (Pc) shown for the whole study

area in California, Oregon, Nevada and Arizona. Columns of

plots indicate the model predictions of risk under different cli-

mate scenarios. The rows of figures relate to the changing risk

of Pc surviving over winter (RiskSurvival, top), or Pc receiving

sufficiently warm and wet spring conditions to pose a risk to

hosts with moderate susceptibility (RiskRainfall, middle) and the

areas in which all of winter survival, spring conditions and non-

suppressive soil conditions suggest Pc could potentially exist

(RiskTotal, bottom). The legend is applicable to all plots, as the

risk levels in each case are valued in the range 0–1.
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the highest rainfall occurring on the marine side of the

coastal ranges. Near the coast, Pc risk tends to increase

with temperature, with the median risk increasing from

0.25 to 0.75 as temperature increases from 11 °C to

12.4 °C. Further inland, Pc risk plateaus and then

declines with further temperature increases, reflecting

the correlation between temperature and water stress

once coastal influences wane.

Given the uncertainty associated with the estimated

vegetation parameters, the soil moisture and pathogen

activity modeling for the 1990–2000 period was repeated

using the assumption that: (i) vegetation susceptibility

was doubled (m = 0.05) and (ii) vegetation susceptibility

was halved (m = 0.2). In case (i) we found that the over-

all spatial pattern of Pc risk was similar, but that in some

regions where we projected no Pc risk for moderately

susceptible vegetation, we would now project minor

risks (RiskRainfall � 0.25) for the more sensitive vegeta-

tion. The overall range where RiskRainfall > 0.5 increased

by 14%, or some 5% of the study region – comparable to

the error associated with the soil temperature model.

Comparable reductions in the range of Pc were found

for case (ii) where the pattern of Pc risk was again main-

tained, but areas where we had projected low risk for

moderately susceptible vegetation were not at risk for

the resistant vegetation. The overall range where

RiskRainfall > 0.5 decreased by 14%, or 5% of the study

region, again comparable to the error due to the soil
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Fig. 3 Climate factors and projected Phytophthora cinnamomi

(Pc) risk for the San Francisco Bay Area. The columns of plots

indicate the different climate scenarios used in the modeling.

The rows indicate the projected changes in mean spring temper-

ature (T°C, top), mean monthly spring rainfall (PPT, middle)

and the estimated Pc risk (RiskTotal, bottom). Note that because

Pc survives winter in the Bay Area in all scenarios, and high car-

bon soils are not prevalent, RiskRainfall � RiskTotal in this area.

Table 2 Spatial range of Phytophthora cinnamomi (Pc) in terms of projected total risk Risktotal, risk of winter survival Risksurvival,

and risk during the spring season (Riskrainfall) for the three climate scenarios at regional scales (an approximately 1000 by 1000 km

area covering California and portions of neighboring states) and for the Bay Area (an approximately 150 by 150 km area covering

the San Francisco Bay, stretching inland to Livermore, north to Napa and south almost to Santa Cruz). Figures given in parentheses

indicate the percentage of the modeled domain represented by the given areas. To illustrate the complex interactions between

temperature and water availability that govern the dynamic risk of Pc during spring growth, the area in which risk increases

(RiskRainfall↑) and decreases (RiskRainfall↓) for each climate scenario is also shown

Scale Scenario

RiskTotal > 0.5

9 105 km2

RiskSurvival > 0.5

9 105 km2

RiskRainfall > 0.5

9 105 km2

RiskRainfall↑
9 105 km2

RiskRainfall↓
9 105 km2

Regional 1990–2000 1.97 (15.6%) 5.36 (42.6%) 3.27 (25.9%)

2045–2055 B1 1.63 (13.0%) 8.21 (65.0%) 2.23 (17.7%) 3.90 (30.1%, 0.06↑) 4.01 (31.8%, 0.26↓)
2045–2055 A2 1.74 (13.7%) 9.07 (71.8%) 2.20 (17.4%) 4.73 (37.3%, 0.08↑) 3.39 (26.7%, 0.28↓)

Scale Scenario Risk > 0.5

km2

RiskSurvival > 0.5

km2

RiskRainfall > 0.5 RiskRainfall↑
km2

RiskRainfall↓
km2

Bay Area 1970–2000 5384 (52.0%) 10 000 (100%) 5384 (52.0%)

2035–2065 B1 6514 (63.0%) 10 000 (100%) 6514 (63.0%) 817.4 (7.91%) 6 (0%)

2035–2065 A2 3785 (36.6%) 10 000 (100%) 3785 (36.6%) 4.67 (0%) 1174 (11.4%)

Table 3 Error statistics compiled for running the soil temper-

ature model for 16 CIMIS stations located across California.

Stations include: Bishop, Calipatria/Mulberry, San Luis

Obispo, Buntingville, Alturas, King City-Oasis Road, Victor-

ville, Madera, Belridge, Otay Lake, Camarillo, Union City,

Owens Lake South, Cadiz Valley, Woodland, Plymouth

Error metric

Mean

error

Error

standard

deviation

Mean absolute error 1.68 0.66

Mean error �0.66 1.31

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12463
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temperature model. Thus, the relative change in Pc risk

is: (i) significantly damped compared to relative change

in host susceptibility and (ii) larger but comparable to

other sources of error in the predictions.

Total contemporary Pc Risk. The contemporary area

where RiskTotal exceeds 0.5 covers 197 000 km2 of the

southwestern USA, or approximately 16% of the study

region. Pc’s potential range in the Bay Area covers

approximately 52% of the terrestrial surface, some

5384 km2. Note that the pixel in the regional model that

corresponds to the Bay Area has RiskTotal = 1: the regio-

nal scale pixels do not account for spatial patterning

within pixels. The total range of Pc is therefore likely to

be overstated by the regional model due to small-scale,

site-specific factors relating to orography, microclimate,

and soil type.

Figure 4 presents a comparison of the estimated Pc

risk under contemporary conditions with twelve loca-

tions in the state of California where Pc has been posi-

tively identified from soil baiting and diseased plants.

Recently, Pc was also identified in a number of loca-

tions around the Bay Area, allowing a higher resolution

comparison between observations and predicted risk to

be made in this area. With one exception, all the

observed occurrences of Pc are located in sites where

the predicted risk levels were 0.8–1. The one site

located in a region where we predicted negligible Pc

risk is located within the Imperial Valley, an exten-

sively irrigated agricultural region with an otherwise

desert climatology. Thus, depending on how the Impe-

rial Valley site is treated, the rate of Type 2 errors from

the model was 0–8%. Although the number of sites

where this comparison could be made was limited, the

probability of randomly selecting 11 of 12 locations

with RiskTotal ≥ 0.8 is less than one in 107 across the

whole model domain, and less than one in 104 for Cali-

fornia specifically.

How do the different modes of Pc response to temperature
and soil moisture change its projected range under
plausible future climate scenarios?

The effects of a warming climate on Pc risk vary

depending on the risk factors and specific climate sce-

nario being assessed. Warming changes winter survival

in a straightforward fashion: under the A2 scenario sur-

vival increases dramatically so that the region in which

more than half of a Pc population would survive the

winter increases from 43% (contemporary) to 72% of

the study area. More modest increases in winter-sur-

vival probabilities arise under the B1 climate scenario,

in which Pc winter survival becomes probable over

65% of the study area (Table 2).

The effects of climate change on soil moisture and Pc

spring activity are more complex. At the regional scale,

climate change reduces the risk posed by Pc (Fig. 2)

across the majority of the study area. However, the

changes are spatially variable. Pc risk declines mark-

edly in the Central Valley. It is largely unchanged in

coastal northern California and Oregon, where rainfall

levels are projected to remain high. Its range is also

unchanged in the south-eastern part of the region,

which is significantly water limited under contempo-

rary scenarios and projected to remain so. Pc risk

increases in the north-eastern extent of the study area.

The increase in Pc risk in this area is greatest in the high

emissions scenario. In the lower emissions scenario,

comparable increases in Pc extent occur inland in the

southern extent of the range. In both cases, these

increases indicate an interaction of warmer tempera-

tures with unchanged or slightly enhanced rainfall.

The potential complexity of the interactions between

changing water and temperature in one of these south-

ern locations is illustrated in Fig. 5 for a site in the

southwestern part of the region. In this location, Pc risk

increases under the B1 scenario but decreases under the

A2 scenario. Figure 5 shows a decomposition of the

projected changes into those due to temperature and

those due to changes in soil moisture. As shown,

increasing temperatures increase Pc risk from the base-

line case for both A2 and B1 scenarios, but in the A2

scenario, a decrease in soil moisture more than offsets

the effect of warmer spring conditions. Conversely,

under the B1 conditions, the slight increase in soil mois-

ture increases pathogen risk at this location, but only

when both temperature and soil moisture increase
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Fig. 4 Plot of observed Phytophthora cinnamomi (Pc) infection in

CA (circles, red online, gray in print) overlaid on 1990–2000

(contemporary) risk projections at the scale of the southwest

region and the scale of the San Francisco Bay Area. With the

exception of a single site within the irrigated Imperial Valley,

the observed Pc infection locations occur where the model indi-

cates that RiskTotal = 0.8–1.0 (Jacobs et al., 1997; Swiecki et al.,

2003, 2011; Garbelotto et al., 2006; Rizzo & Fichtner, 2007; Elliott

et al., 2010; Fichtner et al., 2010)
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together does the large predicted increase in pathogen

risk occur. While these threshold-dynamics are not gen-

eral across the study range, they illustrate the potential

for highly nonlinear pathogen responses to interactions

in changing temperature and moisture conditions, and

highlight the importance of considering the impacts of

synchronous changes in climate on pathogen dynamics.

As summarized in Table 2 and illustrated in Fig. 2,

water limitation reduces Pc risk over a range of

340 000 km2 across the region for the high emissions

scenario, with an average decrease in the Pc risk of

0.28. Pc risk is reduced over 40 000 km2 for the low

emissions scenario, by 0.26 on average. Alleviation of

thermal limitations on Pc growth rates increased the

predicted Pc risk in an 470 000 km2 area for the high

emissions scenario with a projected mean increase of

0.08. For the low emissions scenario, Pc risks increase

over a 390 000 km2 area for the low emissions scenario,

with an average 0.05 increase in the Pc risk. Overall, the

total area where Pc risks exceed 0.5 declines to approxi-

mately 164 000 km2 or 13% of the study region for the

B1 scenario. The decline in spatial extent under a high

emissions (A2) scenario is actually slightly less pro-

nounced, with the predicted Pc range being

170 000 km2 or 13.7% of the region. This occurs even

though the area where there is sufficient water for high

spring Pc activity declines more for the high emissions

scenario than for a low emissions scenario. The results

reflect the importance of a tradeoff between increased

winter survival range and decreased spring water

availability.

At the scale of the Bay Area, future climate projec-

tions contain considerable uncertainty associated with

climatic downscaling. Broadly, however, the B1

scenario represents a case with warmer spring tempera-

tures but without considerable reduction in rainfall,
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Fig. 5 Illustration of the complex interaction of temperature and water availability illustrated for an inland, montane location in Cali-

fornia, located in the Sierra Nevada foothills inland from Santa Barbara. Here, temperature and rainfall both increase slightly for the B1

scenario, while temperature increases and rainfall decreases markedly for the A2 scenario. This leads to a slight decrease in relative soil

moisture (S) for the A2 scenario and a slight increase for the B1 (a). Baseline RiskRainfall (expressed as the root colonization extent, B) is

shown in (b). (c) shows the projected PDF of B under the A2 scenario, and (d) shows the PDF of B under the B1 scenario, the vertical

lines in (b–d) indicate the mean values of B. The B1 scenario generates a large increase in Phytophthora cinnamomi (Pc) risk, while the A2

scenario creates a decrease in risk. However, if the contributing factors are isolated [dashed and dotted lines in (c) and (d)], the increase

in temperature in the A2 scenario causes an increase in Pc risk, which is more than offset by the decrease due to moisture limitation. In

isolation, neither the temperature not precipitation increases in the B1 scenario would lead to any change in Pc risk, but their cumula-

tive effect is to create a dramatic increase in overall risk.
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while the A2 scenario represents a situation with

reduced rainfall and warmer temperatures. As shown

in Fig. 3, the effects are quite striking: an increase in

temperature without a large decrease in rainfall results

in an increase in the area that is vulnerable to Pc

by approximately 20% (from approximately 5300–
6500 km2). Conversely, a decline in rainfall and

increase in temperature result in a large decline in Pc

risk, to approximately 3800 km2, about half of its

contemporary range.

Discussion

The modeling study indicated four different controls

on modeled Pc range, which interacted to generate

complex spatial patterns of Pc response to projected cli-

matic changes. The first control was the proportion of

soil organic carbon, which provided a static template of

(isolated and restricted) areas in which Pc would not

establish. The second control was winter temperatures

which impede pathogen over-winter survival. The

range over which the pathogen survived winter

expanded sequentially from contemporary conditions

to the B1 and then A2 climate scenarios. The third and

fourth controls on pathogen range lay in spring temper-

ature and rainfall which together controlled spring Pc

activity. Declining precipitation in the B1 and A2 sce-

narios inhibited Pc growth. The implications of drier

climatic conditions in the study area varied depending

on the absolute local Pc risk in a given area. Thus, little

change in Pc risk was predicted in wet regions such as

the northern coast, where drier spring conditions under

B1 and A2 climate futures were still wet enough to sup-

port Pc activity. In the driest limits of the current Pc

range, contemporary rainfall was too limited to support

Pc activity, and further drying of the climate under B1

and A2 scenarios did not alter the pathogen risk. In

mesic regions, progressively dry springs reduced over-

all Pc risk under the B1 scenario, relative to contempo-

rary conditions. Despite further reductions in rainfall

under the A2 scenario, however, only minor further

decreases in Pc spring risk were predicted compared to

the B1 scenario. This we attribute to increasing spring

temperatures enhancing the rate of Pc expansion dur-

ing spring, which increased disease risk over part of

the model range. The spatial locations where warmer

spring temperatures under the B1 and A2 scenarios

caused increases in Pc risk were spatially separated

from the locations where decreases in rainfall reduced

Pc risk, so the overall pattern of Pc risk during spring

under contemporary, B1 and A2 scenarios differs: the

B1 case primarily reflects reductions in the contempo-

rary area of high risk, while the A2 scenario continues

this reduction but also leads to expanded regions of

moderate Pc risk in the north-eastern part of the study

region. The interactions of these controls lead to a

decrease in Pc range under both B1 and A2 scenarios

compared to contemporary conditions, but, surpris-

ingly, less of a reduction in total Pc range under the

more extreme warming scenario.

The modeling study ignored several factors that

impact dynamic Pc risk – that is, the risk of Pc develop-

ing in uninfected areas. It has not considered pathways

of introduction of Pc into natural communities. Proxim-

ity to roads, streams, soil disturbance, innoculum

sources, and high vehicle or pedestrian traffic are

highly likely to impact these risks. Similarly, the diver-

sity of Californian vegetation and its variable sensitivity

to Pc has not been considered: higher resolution studies

considering differentials of vegetation susceptibility

could provide a far more nuanced picture of the spatial

extent of Pc, and could, for instance, eliminate areas of

risk in primarily urbanized environments in the San

Francisco Bay Area. However, in the absence of

improved data regarding host–pathogen interactions

for dominant vegetation types in the area, there is lim-

ited basis on which to make such a high-resolution

suite of assumptions about vegetation susceptibility.

Despite this missing information, the damped sensiti-

vity of Pc range relative to changes in assumed host

resistance across the region in conjunction with field

observations confirming that a wide range of regional

species are susceptible to Pc, suggests that the overall

conclusions of the modeling study regarding climate

sensitivity should be robust. Finally, we have assumed

that the local environmental conditions experienced by

Pc are determined solely by climate, which is not true

in the irrigated agricultural areas in California’s Central

and Imperial Valleys. In these regions, irrigation

regimes that are sufficiently frequent to sustain high

water potentials in the root zone would alleviate the

environmental water stress, as indicated by the obser-

vation of Pc occurrence within the Imperial Valley. If

water stress is alleviated in these regions, temperatures

are warm enough in both winter and spring to support

high levels of Pc activity. Thus, irrigated agricultural

land should be considered at risk of Pc infestation

under both present and future scenarios.

Overall, the modeling analysis suggests that Pc has a

much larger potential range in the US southwest than

could be inferred purely from current observations of

the locations of infected sites. At present, despite the

high awareness of Phytophthora ramorum and sudden

oak death in the US southwest, there is limited public

awareness, policy or scientific attention given to Pc

(Swiecki et al., 2011). Sources of Pc are known to exist

in agricultural and nursery settings in California

(including nurseries supplying native plants that are

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12463
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used for revegetation, and could therefore export the

disease into native ecosystems), and appear to be the

source of Pc infection in native ecosystems in several

cases (Zentmyer, 1980; Swiecki et al., 2011). However,

no current phytosanitation certification programs, pro-

tocols for reducing soil movement from infected to

clean sites, or recognized successful spot treatment

approaches to minimizing Pc spread are in place in Cal-

ifornia (Dunstan et al., 2009; Swiecki et al., 2011). While

the number of native species in California that are sus-

ceptible to Pc remains unclear, estimates in comparably

biodiverse southwestern Australia suggest that over

3000 of the 5700 indigenous plant species are suscepti-

ble (Shearer et al., 2004). Pc has already demonstrated

its potential to reshape plant communities and entire

ecologies (Garkaklis et al., 2004). In the absence of

detailed information about host susceptibility in Cali-

fornia, the large ranges that appear to be supported by

contemporary climates in conjunction with the severe

effects of Pc in comparable ecosystems point to a critical

need to improve risk assessment, phytosanitation and

awareness of Pc disease.

Despite its relatively simple ecology, Pc nonetheless

displays non-monotonic responses to climatic warming

at regional and local scales, with spatially distinct

regions having opposite trends in Pc risk. Although the

modeling framework presented accounts for many dif-

ferent aspects of climate, other changes including car-

bon fertilization due to enhanced atmospheric [CO2],

changing land use and ecological thresholds have been

neglected, and linking disease risk models to ecosystem

outcomes remains challenging. For example, in Wes-

tern Australia a 40 year drying trend has reduced Pc

activity, but with the effect of replacing Pc induced

mortality with drought stress stress (Brouwers et al.,

2013). Considering that Pc mortality is linked to periods

of drought stress that follow wet periods in which Pc

causes root damage (Desprez-Loustau et al., 2006), limi-

tation of Pc range due to drying, while beneficial for

limiting expansion of the pathogen, may come at the

expense of increased mortality for infected ecosystems.
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