Mechanics PhD Preliminary Spring 2017

1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by $\mathbf{n} = (1 \ 1 \ 1)^T$. Assume that Ω is subjected to a homogeneous (Cauchy) stress field

$$\boldsymbol{\sigma} = \beta \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$
 MPa

where β is a non-dimensional load factor. Assume that the interface fails when the normal stress on the interface exceeds 100 MPa. Determine the maximal permissible value of β .

- 2. (10 points) Consider a small-strain hyperelastic body Ω , free of body forces, with strain energy density $W(\varepsilon)$ subjected to dead-loads \bar{t} on $\partial \Omega_t \subset \partial \Omega$ and restrained with zero displacement on $\partial \Omega_u \subset \partial \Omega$, where $\overline{\partial \Omega_t \cap \partial \Omega_u} = \partial \Omega$. Starting from the principal of minimum potential energy, derive the strong form of the governing equilibrium equations.
- 3. (10 points) A three dimensional viscoelastic body $\Omega = \{ \boldsymbol{x} \mid x_1^2 + x_2^2 \leq R^2 \text{ and } |x_3| \leq L/2 \}$ has a measured displacement field $\boldsymbol{u} = (\alpha x_1/R)\boldsymbol{e}_1 + (\alpha x_2/R)\boldsymbol{e}_2$, where R and L are given and $\alpha > 0$ is much smaller than R and L. Determine the algebraically maximum and minimum normal strains in the body as well as the maximum shear strain in the body.

Mechanics PhD Preliminary Fall 2016

1. (10 points) Consider a linear elastic, isotropic material, under two-dimensional plane strain. Assume that the material is subjected to a body force, \boldsymbol{b} , that is described by a known potential, V; i.e. $b_i = -V_{,i}$. Assume further that

$$\sigma_{11} = \phi_{,22} + V
\sigma_{22} = \phi_{,11} + V
\sigma_{12} = -\phi_{,12}$$

where ϕ is an unknown stress function.

- (a) Show that the equilibrium equations are identically satisfied by this assumption.
- (b) Noting that compatibility requires $\varepsilon_{11,22} + \varepsilon_{22,11} 2\varepsilon_{12,12} = 0$, find the governing equation for ϕ in terms of V and the elastic constants.
- 2. (10 points) The general form of an infinitesimal rigid motion in two-dimensions can be described by three scalars A, B, C where A, B describe an infinitesimal translation and C describes an infinitesimal rotation. In Cartesian form the resulting rigid displacement field is given by:

$$u_1(x_1, x_2) = A + Cx_2$$

 $u_2(x_1, x_2) = B - Cx_1$

Find the form of this rigid displacement field in polar coordinates; i.e. determine the corresponding $u_r(r,\theta)$ and $u_{\theta}(r,\theta)$.

3. (10 points) Starting from the global statement of linear momentum balance

$$\int_{\mathcal{B}} \boldsymbol{b}(\boldsymbol{x}) \, dV + \int_{\partial \mathcal{B}} \boldsymbol{t}(\boldsymbol{x}, \boldsymbol{n}) \, dA = \int_{\mathcal{B}} \rho(\boldsymbol{x}) \ddot{\boldsymbol{u}}(\boldsymbol{x}) \, dV$$

derive "Newton's 3rd Law" $\boldsymbol{t}(\boldsymbol{x},\boldsymbol{n}) = -\boldsymbol{t}(\boldsymbol{x},-\boldsymbol{n})$. Hint: Employ a pillbox construction.

Name ______

Doctoral Preliminary Examination

Mechanics

Problem 1. (50 points)

Consider the double cantilever beam shown in Figure 1. The beam length is a, width is B and height is h. Assume that the beam is made by linear elastic material, and the Young's modulus is E, and the moment inertia is $I = Bh^3/12$.

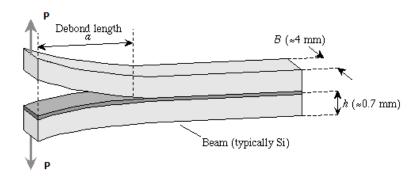


Figure 1: A double cantilever beam

Calculate:

- (1) The bending moment M(x) and the total strain energy stored inside the beam U_E (for the sum of the two beams);
- (2) The cantilever beam deflection (under the transverse load) at the tip (EIv''(x) = M(x))?
- (3) The total external potential W_L (for the two forces)?
- (4) The total fracture energy release per unit width, i.e.

$$G = -\frac{1}{B} \frac{d\Pi}{da}$$
, where $\Pi = U_E - W_L$

Hints:

- (1) Do not need to calculate numerical values.
- (2) Only consider the classical bending part of the strain energy of the beam.

Problem 2.(30 points)

Consider a simply connected continuum media Ω under infinitesimal deformation. The following displacement boundary condition is prescribed,

$$u_i = E_{ij}x_j, \ \forall \mathbf{x} \in \partial \Omega,$$

where E_{ij} is a constant symmetric tensor.

Show that

$$\frac{1}{\Omega} \int_{\Omega} \epsilon_{ij} d\Omega , = E_{ij}$$

for the infinitesimal deformation (strain) field ϵ_{ij} .

Problem 3.(20 points)

Derive the weak formulation for the following static linear elastic (small deformation) problem, i.e.

$$\sigma_{ij,j} + f_i = 0, \ \forall \mathbf{x} \in V$$
, (1)

where $\sigma_{ij} = C_{ijk\ell} \epsilon_{k\ell}$ is the Cauchy stress; $\epsilon_{ij} = (1/2)(u_{i,j} + u_{j,i})$ is the strain field, and f_i is the body force. The following displacement boundary condition is being prescribed,

$$u_i = \bar{u}_i, \ \forall \mathbf{x} \in \partial V$$
, (2)

where \bar{u}_i is the prescribed boundary displacement.

Name	
1 1001110	_

Doctoral Preliminary Examination (Solid Mechanics)

Problem 1. (40 points)

Consider a single-connected domain Ω . The following boundary condition is prescribed,

$$\sigma_{ij}n_j = t_i = \Sigma_{ij}n_j, \ \forall \mathbf{x} \in \partial \Omega$$

where Σ_{ij} is a constant stress tensor.

Assume that the body force is zero, and the equilibrium equation inside the domain has the following form,

$$\sigma_{ij,j}=0$$
.

Show that

$$\frac{1}{\Omega} \int_{\Omega} \sigma_{ij} \epsilon_{ij} d\Omega = \Sigma_{ij} < \epsilon_{ij} >$$

where

$$<\epsilon_{ij}>:=\frac{1}{\Omega}\int_{\Omega}\epsilon_{ij}d\Omega$$
.

Problem 2. (30 points)

Consider the following displacement field,

$$u_{x} = \frac{1}{2}y^{2} + \frac{1}{4}y^{4} + xz$$

$$u_{y} = \frac{1}{2}x^{2} + \frac{1}{4}x^{4} + yz$$

$$u_{z} = xy$$

- 1. Find the strain field?
- 2. Find the rotation field?
- 3. At the point (1, 1, 0), there is a principal strain that has value -2.0. Find the other two principal strains.

Problem 3. (30 points)

Consider a stress tensor in plane stress state,

$$[\sigma_{ij}] = \left[\begin{array}{cc} 3 & 1 \\ 1 & -1 \end{array} \right]$$

Find suitable planes, i.e. $\mathbf{n} = (n_1, n_2)^T$, such that $\sigma_n = 0$.

Doctoral Preliminary Examination Mechanics

Problem 1(25 points)

Consider the following plane strain state,

$$\epsilon_{xx} = a_1 y^2 + a_2 y^4$$

$$\epsilon_{yy} = b_1 x^2 + b_2 x^4$$

$$\gamma_{xy} = cxy(x^2 + y^2)$$

- 1. Is this strain field a compatible strain field? If it is, are any restrictions required on the constants a's, b's and c?
- 2. Find the principal strains at the point (1,1) with the constant $a_1 = 1$ and c = 1.

Problem 2. (50 points)

The stress components at a point P is given as

$$[\sigma_{ij}] = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 1 \end{array} \right]$$

- (a) Find the traction components on a plane passing through point P, whose outward normal is n = $(3/5, 0, 4/5)^T$;
- (b) Find the normal and shear stresses at the point P on that given plane, and
- (c) Find the principal stresses at the point P.

Problem 3. (25 points)

Consider the isotropic linear elasticity stress-strain relation,

$$\sigma_{ij} = \lambda \epsilon_{pp} \delta_{ij} + 2\mu \epsilon_{ij} .$$

where λ and μ are Lamé constants.

Consider that an isotropic elastic sphere of radius r centred at the origin undergoes the following uniform dilatation deformation,

$$u_1 = \alpha x_1, \ u_2 = \alpha x_2, \ \text{ and } \ u_3 = \alpha x_3, \ \alpha > 0.$$

- (a) Find the strain components;
- (b) Find the stress components.
- (c) Derive the bulk modulus of the material.

$$\operatorname{Hint}: K := \frac{\sigma_m}{\epsilon_{ii}}, \quad \sigma_m = \frac{1}{3}\sigma_{ii} .$$