University of California, Berkeley Spring Semester 2018 Civil and Environmental Engineering Structural Engineering, Mechanics, and Materials

NAME:

MS Comprehensive Exam - Structural Design

A rigid block is supported on four columns laid out on a 28 ft by 28 ft grid. The columns are supported on a rigid foundation on a very stiff rock. The columns are fixed against rotation at both ends. Weight W comprises 1400 kips service dead load and 400 kips service live load. You may otherwise ignore self-weight. Total design lateral load V is 400 kips, which was calculated from the design earthquake loading using ASCE 7 including permissible force reduction factor R/I_e . For this problem, assume the load V acts in one horizontal direction and ignore loading in the orthogonal horizontal direction and the vertical direction. The columns can be either structural concrete or structural steel. If concrete, use $f_c = 4000$ psi and Grade 60 steel, and assume the column has square cross section. If steel, use A36 steel. An engineer has completed preliminary designs for both steel and concrete, with the resulting nominal strengths shown.

(a) In this sentence, underline either *structural concrete* or *structural steel* to indicate the material you will use for your design.

(b) Calculate the shear force, moment, and axial force in each column due to the lateral force V.

(c) Use the LRFD method to assess whether the column moment design is sufficient for the specified loads. You may ignore second-order effects.

UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials M.S. Comprehensive Examination: Design

Consider the shown frame and the cross-section of the column in the figure below. Consider only one option for the column: steel or reinforced concrete. Calculate the factored load P that can be applied to this structure. Distributed factored load is 20 kip/ft.

Check all bending and shear failure modes and indicate whether or not the column is adequate to carry the loads. The steel column is sufficiently braced and lateral-torsional buckling is not a consideration. The beam does not need to be designed and can be assumed to have sufficient strength. All the information you need for this problem is given below, still, if you feel you need a piece of information that is not given, make a reasonable assumption and continue the problem. You can use approximate equations if you do not remember the exact equation, but, you have to explain the approximation and how that approximation might affect your answer.

UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Ph.D. Preliminary Examination: Design

Consider the frame shown below subjected to dead load and earthquake loading. Ignore the selfweight and select your material (steel or reinforced concrete) as you prefer making use of the information given below. All loads are unfactored. Use factored load combinations in your design. According to your chosen material, design the column either as a R/C column or a steel column. For the concrete case use a reinforced concrete square section. For the steel case, use a box section. The beam design is not part of this problem. You do not need to consider buckling in the column design. Justify any assumptions you may make.

After designing the column, compute the horizontal deflection at the column under the given unfactored (service) forces assume *linear elastic response* in your calculation. The horizontal deflection should be limited to 1/1000 of the column height because of the presence of important drift-sensitive nonstructural components. If the calculated deflection is larger than this limit, comment (without calculations) on how the deflection can be reduced.

Student's Name	(Please Print) Last: _
----------------	------------------------

University of California at Berkeley Department of Civil and Environmental Engineering

Comprehensive M.S. Examination: Design

Do only ONE of the following cases of steel or concrete

This is a closed book exam. No questions can be asked during the exam. All of the information you need to do the problem is provided. If you feel you need to use any piece of information not given, please use an appropriate value and explain why you used the value.

Choose **ONLY ONE** of the two structures shown in the figure and do the following.

a. Calculate the collapse load P for the structure shown. Appropriate design-oriented simplifications may be used, but they should be fully identified and explained. For interaction equation (for either steel or reinforced concrete) use: $(P/\phi P_n) + (M/\phi M_n)^2 \le 1.0$

First:

b. For the option you have chosen (Steel or R/C), without doing any calculation, sketch the connection at the base of the column AC and list all failure modes (limit states) that you would consider if you were to design that connection.

Wr. B/ft 2		``		Ча	ble 1 V.	-1 (c -Sh rope	sont ape	s S s	(pe				
Nom- inal Mr. C						 						W14	-W12
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ompact		Axis)	Š			Axis	λ-γ		4	<i>h</i> .	Torsi Prope	onal erties
p/#			S	~	Z	-	s	-	2	2	2	ſ	Cw
-	- - -	in.4	in. ³	Ë,	in. ³	in.4	ir.3	'n.	in. ³	.É	Ë	in. ⁴	in. ⁶
132 7.	15 17.7	1530	209	6.28	234	548 548	74.5	3.76	113	4.23	13.7	12.3	25500
120 / 120	80 19.3 49 21.7	1380	190 121	6.24	212 192	495 447	6/.5 61.2	3.73	102 92.7	4.20	13.6 13.4	9.37	20200
99 90 10.	34 23.5 2 25.9	1110 999	157 143	6.17 6.14	173	402 362	55.2 49.9	3.71 3.70	83.6 75.6	4.14 4.10	13.4 13.3	5.37	18000 16000
82	92 22.4	881	123	6.05	139	148	29.3	2.48	44.8	2.85	13.4	5.07	6710
74 6.	41 25.4 97 27 5	795	112	6.04 6.01	126 115	134	26.6	2.48 2.46	40.5 36.0	2.83	13.4	3.87	5990 5380
61 7.	75 30.4	640	92.1	5.98	102	107	21.5	2.45	32.8	2.78	13.3	2.19	4710
53 6. 48 6. 43 7.	11 30.9 75 33.6 54 37.4	541 484 428	77.8 70.2 62.6	5.89 5.85 5.82	87.1 78.4 69.6	57.7 51.4 45.2	14.3 12.8 11.3	1.92 1.91 1.89	22.0 19.6 17.3	2.22 2.20 2.18	13.2 13.2 13.2	1.94 1.45 1.05	2540 2240 1950
38 6. 34 7. 30 8.	57 39.6 41 43.1 74 45.4	385 340 291	54.6 48.6 42.0	5.87 5.83 5.73	61.5 54.6 47.3	26.7 23.3 19.6	7.88 6.91 5.82	1.55 1.53 1.49	12.1 10.6 8.99	1.82 1.80 1.77	13.6 13.5 13.4	0.798 0.569 0.380	1230 1070 887
26 5. 22 7.	98 48.1 46 53.3	245 199	35.3 29.0	5.65 5.54	40.2 33.2	8.91 7.00	3.55 2.80	1.08 1.04	5.54 4.39	1.30 1.27	13.5 13.4	0.358 0.208	405 314
336 2. 305 2.	26 5.47 45 5.98	4060 3550	483 435	6.41 6.29	603 537	1190 1050	177 159	3.47 3.42	274 244	4.13 4.05	13.8 13.6	243 185	57000 48600
279 2. 252 2.	66 6.35 89 6.96	3110	88 88 88	6.16 6.06	481 428	937 828	143 127	3.38 3.34	220 196	4.00	13.4 13.2	143 108	42000 35800
230 3.	11 7.56	2420	321	5.97	386	742 664	115	3.31	177 150	3.87	13.0	83.8 64 7	31200
190 3.	65 9.16	1890	263	5.82	31	589	93.0	3.25	143	3.77	12.7	48.8	23600
170 4.	03 10.1 46 11 2	1650	235 200	5.74 5.66	275	517 454	82.3 79 8	3.22	126	3.70	12.4	35.6 25.8	20100
136 4.	96 12.3	1240	186	5.58	214	398	64.2	3.16	98.0	3.61	12.2	18.5	14700
120 106 6.	57 13.7 17 15.9	1070 933	163	5.51	186 164	345	56.0 49.3	3.13	85.4 75 1	3.56	12.0 11 a	12.9 9.13	12400 10700
96 6.	76 17.7	833	131	5.44	147	270	44.4	3.09	67.5	3.49	11.8	6.85	9410
87 7.	48 18.9	740	118	5.38	132	241	39.7	3.07	60.4	3.46	11.7	5.10	8270
5 62 7 7	ZZ ZU./	200	10/ 97.4	5.31	108	216 195	30.8	3.04	5.43 49.7	3.43	11./	3.84	/330
62 6	92 24.9	533	67.8	5.28	96.8	174	29.1	3.02	44.1	3.38	11.5	2.18	5780

· · · · ·

.

Area Depth, bit his Web Flage Distance Area Depth, his Mich his Thickness, frage bit his Thickness, frage Distance Area Depth, his Tim Tim <t< th=""><th>- X - X</th><th></th><th>*</th><th></th><th>F</th><th>able</th><th></th><th>ů (c</th><th>onti 3pe</th><th>inue SS</th><th>d)</th><th></th><th></th><th></th><th></th><th></th></t<>	- X - X		*		F	able		ů (c	onti 3pe	inue SS	d)					
Muta Junctiones t_{a} Windth, the state t_{a} Flange Distance Distanc Distanc Distanc <th></th> <th><u>a</u></th> <th>- -<u>*</u><</th> <th></th> <th></th> <th></th> <th>Dia</th> <th>iens</th> <th>sion</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		<u>a</u>	- - <u>*</u> <				Dia	iens	sion	S						
Area Depth, bit Thickness, to $\frac{1}{t_{0}}$ Muth, bit Thickness, to $\frac{1}{t_{0}}$						Web			Hai	aĝu				listanc		
Tanade L </th <th>of the second</th> <th>Area,</th> <th>Dep</th> <th>÷.</th> <th>Thickr</th> <th>less,</th> <th>ţ,</th> <th>Wid</th> <th>tth,</th> <th>Thick</th> <th>ness,</th> <th>×</th> <th></th> <th></th> <th>F</th> <th>Work-</th>	of the second	Area,	Dep	÷.	Thickr	less,	ţ,	Wid	tth,	Thick	ness,	×			F	Work-
m² in. in. <thin.< th=""> <thin.< th=""> in.</thin.<></thin.<>	Shape	₹	9		ŗ.		r ~	ą		4 .		kdes	Kdet	¥	-	aole Gage
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		in. ²	j.	Ι.	. <u>.</u>		.E	Ĭ		, Li		.E	.s	'n.	,ej	. <u>.</u>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W14×132	38.8	14.7	145/8	0.645	5/8	5/16	14.7	14 ^{3/4}	1.03	-	1.63	2 ^{5/16}	19/16	10	51/2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×120	35.3	14.5	141/2	0.590	^{9/16}	5/16	14.7	14°/8	0.940	91/c1 21/c1	1.54	21/4 23/4e	11/2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	601×	29.1 29.1	14.2	14 ^{1/8}	0.485	1/2	4 5	14.6	145/8	0.780	3/4	1.38	21/16	17/16	}	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×90 [†]	26.5	14.0	14	0.440	7/16	1/4	14.5	141/2	0.710	11/16	1.31	2	17/16	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W14×82	24.0	14.3	141/4	0.510	1/2	1/4	10.1	10 ^{1/8}	0.855	7/8	1.45	1 ^{11/16}	11/16	107/8	51/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×74	21.8	14.2	141/8	0.450	7/16 7/	1/4	10.1	101/8	0.785	13/16	1.38	15/8	11/16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	89× 14	20.0 17 0	14.0	14	0.415	//16 3/e	3/16	10.0	2.5	0.645	5/4	1.31	1 ^{3/16}	1 /16	>	>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1201		36	3/10	0.01	2 0	0.660	11/40	35	14	· •	107/	51/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ECX4TW	15.0	13.9	13'/8	0.3/0	5/4r	3/16 3/16	0.00 8 0.0	οα	0.505	5/a	<u>5</u>	17/1E			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×43° ×43°	12.6	13.7	13 ⁵ /8	0.305	5/16	3/16	8.00		0.530	1/2 1/2	1.12	13/8		~	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DAP AV 285	11.7	111	141/0	0 310	5/1c	3/re	6 77	6 ³ /4	0.515	41	0.915	11/4	13/16	115/s	31/29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x34°	10.0	14.0	14	0.285	5/16	3/16	6.75	6 ³ /4	0.455	7/15	0.855	1 ^{3/16}	3/4	\rightarrow	31/2
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	×30°	8.85	13.8	13 ^{7/8}	0.270	1/4	1/8	6.73	6 ³ /4	0.385	₿/ _€	0.785	11/8	3/4	-	31/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W14×26°	7.69	13.9	137/8	0.255	1/4	1/B	5.03	5	0.420	7/16	0.820	1 ^{1/8}	3/4	11 ^{5/8}	2 ³ /4 ⁹
WI2×336 ^h 98.9 16.8 16 ^h 1.78 1 ³ / ₄ 7 ^h 13.4 13 ^h 2.96 2 ¹⁵ / ₆ 3.55 3 ^h 1 ⁵ / ₆ 1 ¹ / ₁ / ₁₆ 9 ^h 3×29 ^h 13 ^h 15.9 15.9 15.9 15 ^h 1.53 17 ^h 1.53 17 ^h 13.2 13/ ₁ 13.2 13 ^h 2.77 2 ^h 2.30 3 ^h 15 ^h 15 ^h 17 ^h ×230 ^h 15.7 15.1 15.1 15.1 15.1 12.9 17/ ₁₆ 13.0 13 2.25 2 ^h 2.47 2 ^h 2.85 3 ^h 17 ^h 17 ^h 17.2 2.20 2 ^h 17.2 2.21 2.21 2.21 2.21 2.21 2.21 2.21	×22°	6.49	13.7	133/4	0.230	1/4	1/18	5.00	ۍ ک	0.335	5/16	0.735	11/16	3/4	11 ³ /8	2 ^{3/49}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W12×336 ^h	98.9	16.8	167/8	1.78	13/4	3/ <u>/</u> 8	13.4	133/8	2.96	2 ^{15/16}	3.55	37/8	1 ^{11/16}	9 ^{1/8}	51/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×305"	89.5	16.3	16 ^{3/8}	8.5	15/8	31/16 31,	13.2	13/4	2.71	21/16 21/5	3.30	3 ³ /8 33/e	1 ⁵ /6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-215" 	81.9 741	15.4	153/8	6, I	13/1	11/16		2 5	2.25	5 12 21/4	2.85	31/8	11/2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	×230 ^h	67.7	15.1	15	1.29	15/16	^{11/} 16	12.9	127/8	2.07	21/16	2.67	2 ^{15/16}	1 ¹ /2	j	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×210	61.8	14.7	143/4	1.18	13/16	5/8	12.8	12 ^{3/4}	1.90	17/a	2.50	2 ^{13/16}	17/16		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×190	26.0	14,4	143/8	1.06	11/16	^{3/16}	12.1	1.25/6	1./4	19/4	2.33	27/16	15/16		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×157	0.0C	13.7	133/4	0.870	al./_	7/16	12.5	121/2		13/8	2.00	2 ⁵ /16	11/4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×136	39.9	13.4	$13^{3/8}$	0.790	^{13/16}	7/16	12.4	12 ^{3/8}	1.25	11/4	1.85	21/8	11/4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×120	35.2	13.1	131/8	0.710	^{11/16}	3/8 5/	12.3	123/8	1.11	11/8	1.70	2	13/16		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×106	31.2	12.9	12'/8	0.610	9/18	-/16 5/1e	10.0	121/0	0.890	1 7/a	6. 1	1.78 13/16	11/2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	06× 28×	25.6	12.5	121/2	0.515	1/2	1/4	12.1	121/8	0.810	13/16	1.41	111/16	1 ^{1/16}		
×72 21.1 12.3 127/4 0.430 7/16 7/4 12.0 12 0.650 1/16 1.27 17/16 1.27 17/16 1 7/16 1 2/1 2/16 1.27 17/16 1 7/16 1 2/16 1.20 1.27 17/16 1 2/16 1.20 1.27 12/16 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	6/×	23.2	12.4	12 ^{3/8}	0.470	-1/2	1/4	12.1	121/8	0.735	3/4	1.33	1 ^{5/8}	11/16		
Cax 1 27 1 17 1 17 1 17 1 17 1 17 1 17 1 1	×72	21.1	12.3	121/4	0.430	7/16 3/-	34.5	12.0	<u>5</u>	0.670	5/"	1.27	17/16	1 /16	>	>
	çqx	1.9.1	171	8/.71	0.390	8/2 	91/2	12.0	2	con••	2	1.20	7.1	-	-	-
	^o The actual	size, con	nbinatio:	n and c	orientatic	n of fas	stener ci	anoqme	ints shot	uld be co	mpared	with the	: geomc	ury or u	ie cross	Section
¹ The actual size, combination and orientation of fastener components snould be compared with the geometry or use so	1 2 D BUISNIE (опраци.	j.	1							;	:				