NAME

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1. (40 points)

Define

$$G(t) = \int_0^\infty \left(\int_{-\infty}^{\frac{t}{\sqrt{\nu}}\sqrt{u}} \frac{(1/2)^{\nu/2}}{\sqrt{2\pi}\Gamma(\nu/2)} u^{\nu/2-1} \exp(-\frac{z^2+u}{2}) dz \right) du \tag{1}$$

where ν is a constant, and $\Gamma(\nu/2)$ is Gamma function, which you do not need to evaluate. Just leave it there.

Calculate or find the expression for

$$g(t) = \frac{dG(t)}{dt}$$
 ?

Hint: Apply the fundamental theorem of calculus and chain rule. You do not need to integrate u.

Problem 2 (60 points)

Consider a smooth function $f(x) \geq 0$, and

$$\frac{df}{dx} = -\frac{f^2(x)}{1 - F(x)} =: f'(x)$$

where $1 \ge F(x) = \int_{-\infty}^x f(t)dt > 0$ or $F'(x) = \frac{dF}{dx} = f(x)$.

(1) Calculate f''(x), f'''(x) · · · and verify that

$$\frac{d^k f}{dx^k}(x) = (-1)^k \frac{f^{k+1}(x)}{(1 - F(x))^k}, \quad k = 1, 2, \dots$$

i.e. assume that

$$\frac{d^k f}{dx^k}(x) = (-1)^k \frac{f^{k+1}(x)}{(1 - F(x))^k}, \quad k = 1, 2, \dots$$

show that

$$\frac{d^{k+1}f}{dx^{k+1}}(x) = (-1)^k \frac{f^{k+2}(x)}{(1-F(x))^{k+1}}, \quad k = 1, 2, \dots$$

(2) Let

$$F_n(x) := [F(x)]^n , n = 1, 2, \cdots$$

Find

$$f_n(x) := \frac{dF_n}{dx} = ?$$

and show that

$$f'_n(x) = \frac{d^2 F_n}{dx^2} = nf'(x)[F(x)]^{n-1} + n(n-1)f^2(x)[F(x)]^{n-2}$$

(3) Assume that at $x = x_n$, $f'_n(x_n) = 0$, find

$$F(x_n) = ?$$

(4) Assume that

$$\frac{f(x_n)}{(1 - F(x_n))} = \alpha_n = const. \rightarrow \text{Find } f(x_n) ?$$

(5) Consider the Taylor series expansion of F(x) at $x = x_n$, i.e.

$$F(x) = F(x_n) + F'(x)(x - x_n) + \frac{1}{2!}F''(x_n)(x - x_n)^2 + \frac{1}{3!}F'''(x_n)(x - x_n)^3 + \cdots$$

Show that

$$F(x) = 1 - \frac{1}{n} \left[1 - \frac{\alpha_n(x - x_n)}{1!} + \frac{\alpha_n^2(x - x_n)^2}{2!} - \frac{\alpha_n^3(x - x_n)^3}{3!} + \cdots \right]$$

and subsequently

$$F(x) = 1 - \frac{1}{n} \exp(-\alpha_n(x - x_n)) .$$

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

Problem 1. (40 points)

Define an average operator in \mathbf{R} as

$$< f > (x) := \int_{-\infty}^{\infty} f(y) \exp(-a(x-y)^2) dy$$
, where $|f(y)| < c, \forall y \in \mathbf{R}$

where a > 0 and $0 < c < \infty$ are real numbers.

Show that

$$\frac{d}{dx} < f > (x) = < \frac{df}{dy} > . {1}$$

Problem 2. (40 points)

Consider the following differential equation,

$$EI\frac{d^4v}{dx^4} = q(x), \quad \forall \ 0 < x < L \tag{2}$$

where g(x) is a given function, and the differential equation has the following boundary conditions:

$$v(0) = 0$$
, $v'(0) = 0$, $EIv''(L) = \bar{M}$, $EIv'''(L) = \bar{V}$

Consider a given function w(x) with the boundary conditions

$$w(0) = 0$$
, $w'(0) = 0$, $w(L) = 1$, $w'(L) = -1$.

Evaluate the following definite integral,

$$\int_0^L EIv''(x)w''(x)dx = ?$$

where $v' = \frac{dv}{dx}$, $v'' = \frac{d^2v}{dx^2}$ and $v''' = \frac{d^3v}{dx^3}$.

Problem 3. (20 points)

Consider the following algebraic equation,

$$\left[\begin{array}{c} 1\\x \end{array}\right] = \left[\begin{array}{cc} 1 & 1\\x_1 & x_2 \end{array}\right] \left[\begin{array}{c} N_1(x)\\N_2(x) \end{array}\right]$$

where $N_1(x)$ and $N_2(x)$ are unknown functions, and x_1, x_2 are two given points in the real number axis **R**. Find $N_1(x)$ and $N_2(x)$?

Under which condition, $N_1(x)$ and $N_2(x)$ do not exit.

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1. (40 points)

Consider a 2×2 matrix

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{1}$$

where a, b, c and d are real numbers, and **I** is the 2×2 unit matrix.

Define the characteristic equation of **A** as,

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = 0, \tag{2}$$

where λ is its eigenvalue, i.e.

$$\mathbf{AX} = \lambda \mathbf{X}, \quad \mathbf{X} \neq 0, \text{ and } \quad \mathbf{X} \in \mathbb{R}^2$$

Show that

$$p(\mathbf{A}) = \mathbf{0}.\tag{3}$$

Problem 2. (60 points)

Consider the following nonlinear differential equation,

$$\frac{1}{\left(1 + (y')^2\right)^{3/2}} \frac{d^2 y}{dx^2} = \kappa, \quad \forall \ 0 < x < L \tag{4}$$

where $y' = \frac{dy}{dx}$ and $\kappa = const.$ with the following boundary conditions:

$$y(0) = 0, y'(0) = 0.$$

Find the solution y(x).

Hint: Let $y' = \tan \theta$.

NAM	TE:		
T A LATA			

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1 (40 points)

Consider the following system of ordinary differential equations

$$\frac{dx}{dt} = 3x - 4y, \quad \frac{dy}{dt} = 4x - 7y \tag{1}$$

which are subjected to the following initial condition,

$$x(0) = y(0) = 1. (2)$$

(1) Write the system of equation in a form

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}, \text{ where } \mathbf{x} = (x, y)^T;$$

- (2) Find the eigenvalue of **A**;
- (3) Find the corresponding eigenvectors;
- (4) Find the complete solution of the above ODEs by using the initial conditions.

Problem 2 (60 points)

Consider the following interpolation function,

$$v(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3, \quad 0 \le x \le 1$$

where c_0, c_1, c_2 and c_3 are unknown constants.

Assume that

$$v(0) = u_1$$

 $v'(0) = u_2$
 $v(1) = u_3$
 $v'(1) = u_4$

Express v(x) in terms of u_1, u_2, u_3 and u_4 .

\mathbf{NAME}		

PH.D. PRELIMINARY EXAMINATION (MATHEMATICS)

Problem 1. (50 points)

Consider the following nonlinear ordinary differential equation,

$$\frac{1}{(1+(y')^2)^{3/2}}y'' = \frac{1}{R} = const., \tag{1}$$

where
$$y' := \frac{dy}{dx}$$
 and $y'' := \frac{d^2y}{dx^2}$.

Solve this differential equation:

- (1) Find y'(x) with the boundary condition y'(0) = 0;
- (2) Find y(x) with the boundary condition y(0) = R.

Problem 2 (50 points)

Consider the following fourth order ordinary differential equation of an elastic beam-column,

$$\frac{d^4w}{dx^4} + \lambda^2 \frac{d^2w}{dx^2} = 0, \quad 0 < x < L$$
 (2)

with boundary conditions,

$$w(0) = w'(0) = w(L) = w'(L) = 0. (3)$$

Find:

- (1) A trivial solution of Eqs. (2) and (3);
- (2) The conditions for the existence of non-trivial solutions of Eqs. (2) and (3) .

Hints

The general solution of Eq. (2) has the following form:

$$w(x) = A\cos\lambda x + B\sin\lambda x + Cx + D,$$

where A, B, C and D are unknown constants, which you do not need to determine XXX explicitly.

Mathematics PhD Preliminary Spring 2016

- 1. (25 points) Consider a Hermitian matrix \boldsymbol{A} (i.e. $\bar{\boldsymbol{A}}^T = \boldsymbol{A}$, where the superposed bar implies complex conjugation)
 - (a) Prove that the eigenvalues of \boldsymbol{A} are real.
 - (b) Show that the eigenvectors of \boldsymbol{A} are orthogonal for distinct eigenvalues.
- 2. (25 points) Consider a parametric surface

$$S = \{ \mathbf{r}(u, v) \in \mathbb{R}^3 \mid \mathbf{r} = au^2 \mathbf{e}_x + bv^3 \mathbf{e}_y + cuv \mathbf{e}_z, \ u \in (0, 1), \ v \in (0, 1) \}$$
 (1)

where u, v are non-dimensional parameters and a, b, c are constants with dimensions of length.

- (a) Find the normal vector field of the surface.
- (b) Find the surface area of S.
- 3. (50 points) Consider the 2π -periodic function $f(t+2\pi)=f(t)$ where

$$f(t) = \begin{cases} h & 0 < t \le \pi \\ 0 & \pi < t \le 2\pi \end{cases}$$
 (2)

- (a) Find the Fourier series representation of f(t).
- (b) What is the value of this representation at $x = \pi$? Does this make sense?
- (c) Consider the ordinary differential equation

$$m\ddot{x} + kx = f(t) \tag{3}$$

with initial conditions x(0) = 0, $\dot{x}(0) = 0$. Find x(t).

Mathematics PhD Preliminary Exam Fall 2015

1. (10 points) Solve the follow partial differential equation for u(x,t):

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \qquad x \in (0, l)$$

Subject to the boundary conditions $u(0,t) = u(l,t) = 0 \ \forall t \geq 0$ and initial condition $u(x,0) = \sin(3\pi x/l)$ for $x \in (0,l)$.

2. (10 points) Solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for \mathbf{x} , where

$$\boldsymbol{A} = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 1 & 0 & -1 \end{array} \right]$$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad \boldsymbol{b} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

3. (10 points) The $n^{\rm th}$ order homogeneous linear differential equation with constant coefficients

$$\sum_{k=0}^{n} a_k \frac{d^k y}{dx^k} = 0$$

admits solutions of the form $y(x) = e^{sx}$. Find the form of the solution, y(x), to the homogeneous Cauchy-Euler equation

$$\sum_{k=0}^{n} x^k \frac{d^k y}{dx^k} = 0 \qquad x > 0$$

by employing a change of variables from x to u that is defined by $x = e^u$.

NAME	
------	--

PH.D. PRELIMINARY EXAMINATION

MATHEMATICS

Problem 1 (40 points)

Consider a square 3×3 real number matrix **A**, whose eigenvalue problem is given as

$$\mathbf{A} = \lambda \mathbf{I},\tag{1}$$

where I is the square unit matrix.

One can find its eigenvalues by solving the following characteristic polynomial equation,

$$\det[\mathbf{A} - \lambda \mathbf{I}] = -\lambda^3 + I_1 \mathbf{A} \lambda^2 - I_2(\mathbf{A})\lambda + I_3(\mathbf{A}) = 0, \tag{1}$$

where

$$I_1(\mathbf{A}) = A_{11} + A_{22} + A_{33}, \quad I_2(\mathbf{A}) = \frac{1}{2} \Big(I_1^2(\mathbf{A}) - I_1(\mathbf{A}^2) \Big), \text{ and } I_3 = \det(\mathbf{A}).$$

Show that the following matrix equation holds

$$-\mathbf{A}^3 + I_1(\mathbf{A})\mathbf{A}^2 - I_2(\mathbf{A})\mathbf{A} + I_3(\mathbf{A})\mathbf{I} = 0, \qquad (2)$$

which is the so-called Cayley-Hamilton theorem.

Hint:

Multiply the equation (1) with the second order identity matrix I.

Problem 2 (60 points)

Define an integration as

$$I(y(x)) = \int_0^{\ell} \sqrt{1 + (y'(x))^2} dx$$
, where $y' = \frac{dy}{dx}$

where y(x) is a smooth real function defined in $[0, \ell]$. Obviously, the value of integration depends on the selection of the function y(x) (In fact, it is a functional, but you do not need that knowledge to solve the problem).

Let

$$I(y(x) + \epsilon w(x)) = \int_0^\ell \sqrt{1 + (y'(x) + \epsilon w'(x))^2} dx$$
,

where $\epsilon > 0$ is a real number, and w(x) is another real function.

(1) For given functions y(x) and w(x), calculate the following quantity by taking the limit on ϵ ,

$$\delta I := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Big(I(y(x) + \epsilon w(x)) - I(y(x)) \Big)$$

(2) Define a real function: $f(\epsilon) := I(y(x) + \epsilon w(x))$. Expand it into the Taylor series of ϵ at $\epsilon = 0$ for the first three terms, i.e.

$$f(\epsilon) = f(0) + f'(0)\epsilon + (1/2)f''(0)\epsilon^2 + o(\epsilon^2)$$
.