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MATHEMATICS

Problem 1. (40 points)

Define

G(t) =

∫ ∞
0

(∫ t√
ν

√
u

−∞

(1/2)ν/2√
2πΓ(ν/2)

uν/2−1 exp(−z
2 + u

2
)dz
)
du (1)

where ν is a constant, and Γ(ν/2) is Gamma function, which you do not need to evaluate. Just leave
it there.

Calculate or find the expression for

g(t) =
dG(t)

dt
?

Hint: Apply the fundamental theorem of calculus and chain rule. You do not need to integrate u.

Problem 2 (60 points)

Consider a smooth function f(x) ≥ 0, and

df

dx
= − f2(x)

1− F (x)
=: f ′(x)

where 1 ≥ F (x) =
∫ x
−∞ f(t)dt > 0 or F ′(x) =

dF

dx
= f(x).

(1) Calculate f ′′(x), f ′′′(x) · · · and verify that

dkf

dxk
(x) = (−1)k

fk+1(x)

(1− F (x))k
, k = 1, 2, · · ·

i.e. assume that
dkf

dxk
(x) = (−1)k

fk+1(x)

(1− F (x))k
, k = 1, 2, · · ·

show that
dk+1f

dxk+1
(x) = (−1)k

fk+2(x)

(1− F (x))k+1
, k = 1, 2, · · ·
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(2) Let
Fn(x) := [F (x)]n , n = 1, 2, · · ·

Find

fn(x) :=
dFn
dx

=?

and show that

f ′n(x) =
d2Fn
dx2

= nf ′(x)[F (x)]n−1 + n(n− 1)f2(x)[F (x)]n−2

(3) Assume that at x = xn, f ′n(xn) = 0, find

F (xn) = ?

(4) Assume that
f(xn)

(1− F (xn)
= αn = const. → Find f(xn) ?

(5) Consider the Taylor series expansion of F (x) at x = xn, i.e.

F (x) = F (xn) + F ′(x)(x− xn) +
1

2!
F ′′(xn)(x− xn)2 +

1

3!
F ′′′(xn)(x− xn)3 + · · ·

Show that

F (x) = 1− 1

n

[
1− αn(x− xn)

1!
+
α2
n(x− xn)2

2!
− α3

n(x− xn)3

3!
+ · · ·

]
and subsequently

F (x) = 1− 1

n
exp(−αn(x− xn)) .
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Problem 1. (40 points)

Define an average operator in R as

< f > (x) :=

∫ ∞
−∞

f(y) exp(−a(x− y)2)dy, where |f(y)| < c,∀y ∈ R

where a > 0 and 0 < c <∞ are real numbers.
Show that

d

dx
< f > (x) =<

df

dy
> . (1)

Problem 2. (40 points)

Consider the following differential equation,

EI
d4v

dx4
= q(x), ∀ 0 < x < L (2)

where g(x) is a given function, and the differential equation has the following boundary conditions:

v(0) = 0, v′(0) = 0, EIv′′(L) = M̄, EIv′′′(L) = V̄

Consider a given function w(x) with the boundary conditions

w(0) = 0, w′(0) = 0 , w(L) = 1, w′(L) = −1.

Evaluate the following definite integral,∫ L

0

EIv′′(x)w′′(x)dx =?

where v′ = dv
dx , v′′ = d2v

dx2 and v′′′ = d3v
dx3 .

Problem 3. (20 points)

Consider the following algebraic equation,[
1
x

]
=

[
1 1
x1 x2

] [
N1(x)
N2(x)

]
where N1(x) and N2(x) are unknown functions, and x1, x2 are two given points in the real number
axis R. Find N1(x) and N2(x) ?
Under which condition, N1(x) and N2(x) do not exit.
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Problem 1. (40 points)

Consider a 2× 2 matrix

A =

(
a b
c d

)
(1)

where a, b, c and d are real numbers, and I is the 2× 2 unit matrix.

Define the characteristic equation of A as,

p(λ) = det(λI−A) = 0, (2)

where λ is its eigenvalue, i.e.

AX = λX, X 6= 0, and X ∈ IR2

Show that
p(A) = 0. (3)

Problem 2. (60 points)

Consider the following nonlinear differential equation,

1(
1 + (y′)2

)3/2 d2ydx2
= κ, ∀ 0 < x < L (4)

where y′ = dy
dx and κ = const. with the following boundary conditions:

y(0) = 0, y′(0) = 0.

Find the solution y(x).

Hint: Let y′ = tan θ.
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Problem 1 (40 points)
Consider the following system of ordinary differential equations

dx

dt
= 3x− 4y,

dy

dt
= 4x− 7y (1)

which are subjected to the following initial condition,

x(0) = y(0) = 1 . (2)

(1) Write the system of equation in a form

dx

dt
= Ax, where x = (x, y)T ;

(2) Find the eigenvalue of A;

(3) Find the corresponding eigenvectors;

(4) Find the complete solution of the above ODEs by using the initial conditions.

Problem 2 (60 points)

Consider the following interpolation function,

v(x) = c0 + c1x + c2x
2 + c3x

3, 0 ≤ x ≤ 1

where c0, c1, c2 and c3 are unknown constants.
Assume that

v(0) = u1

v′(0) = u2

v(1) = u3

v′(1) = u4

Express v(x) in terms of u1, u2, u3 and u4.
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Problem 1. (50 points)
Consider the following nonlinear ordinary differential equation,

1

(1 + (y′)2)3/2
y′′ =

1

R
= const., (1)

where y′ :=
dy

dx
and y′′ :=

d2y

dx2
.

Solve this differential equation:
(1) Find y′(x) with the boundary condition y′(0) = 0;
(2) Find y(x) with the boundary condition y(0) = R.

Problem 2 (50 points)
Consider the following fourth order ordinary differential equation of an elastic beam-column,

d4w

dx4
+ λ2

d2w

dx2
= 0, 0 < x < L (2)

with boundary conditions,
w(0) = w′(0) = w(L) = w′(L) = 0 . (3)

Find:
(1) A trivial solution of Eqs. (2) and (3);

(2) The conditions for the existence of non-trivial solutions of Eqs. (2) and (3) .

Hints:
The general solution of Eq. (2) has the following form:

w(x) = A cosλx+B sinλx+ Cx+D,

where A,B,C and D are unknown constants, which you do not need to determine them explicitly.
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Mathematics
PhD Preliminary Spring 2016

1. (25 points) Consider a Hermitian matrix A (i.e. Ā
T

= A, where the superposed bar
implies complex conjugation)

(a) Prove that the eigenvalues of A are real.

(b) Show that the eigenvectors of A are orthogonal for distinct eigenvalues.

2. (25 points) Consider a parametric surface

S = {r(u, v) ∈ R3 | r = au2ex + bv3ey + cuvez, u ∈ (0, 1), v ∈ (0, 1)} (1)

where u, v are non-dimensional parameters and a, b, c are constants with dimensions of
length.

(a) Find the normal vector field of the surface.

(b) Find the surface area of S.

3. (50 points) Consider the 2π-periodic function f(t+ 2π) = f(t) where

f(t) =

{
h 0 < t ≤ π
0 π < t ≤ 2π

(2)

(a) Find the Fourier series representation of f(t).

(b) What is the value of this representation at x = π? Does this make sense?

(c) Consider the ordinary differential equation

mẍ+ kx = f(t) (3)

with initial conditions x(0) = 0, ẋ(0) = 0. Find x(t).

1



Mathematics
PhD Preliminary Exam Fall 2015

1. (10 points) Solve the follow partial differential equation for u(x, t):

∂u

∂t
= c2

∂2u

∂x2
x ∈ (0, l)

Subject to the boundary conditions u(0, t) = u(l, t) = 0 ∀t ≥ 0 and initial condition
u(x, 0) = sin(3πx/l) for x ∈ (0, l).

2. (10 points) Solve the linear system Ax = b for x, where

A =

[
1 1 −1
1 0 −1

]

x =

 x1
x2
x3

 b =

(
3
4

)

3. (10 points) The nth order homogeneous linear differential equation with constant coef-
ficients

n∑
k=0

ak
dky

dxk
= 0

admits solutions of the form y(x) = esx. Find the form of the solution, y(x), to the
homogeneous Cauchy-Euler equation

n∑
k=0

xk
dky

dxk
= 0 x > 0

by employing a change of variables from x to u that is defined by x = eu.
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Problem 1 (40 points)
Consider a square 3 × 3 real number matrix A, whose eigenvalue problem is given as

A = λI, (1)

where I is the square unit matrix.
One can find its eigenvalues by solving the following characteristic polynomial equation,

det[A− λI] = −λ3 + I1A)λ2 − I2(A)λ+ I3(A) = 0, (1) (2)

where

I1(A) = A11 +A22 +A33, I2(A) =
1

2

(
I21 (A) − I1(A2)

)
, and I3 = det(A) .

Show that the following matrix equation holds

−A3 + I1(A)A2 − I2(A)A + I3(A)I = 0 , (2)

which is the so-called Cayley-Hamilton theorem.

Hint:
Multiply the equation (1) with the second order identity matrix I.

Problem 2 (60 points)

Define an integration as

I(y(x)) =

∫ `

0

√
1 + (y′(x))2dx, where y′ =

dy

dx

where y(x) is a smooth real function defined in [0, `]. Obviously, the value of integration depends
on the selection of the function y(x) (In fact, it is a functional, but you do not need that knowledge
to solve the problem).

Let

I(y(x) + εw(x)) =

∫ `

0

√
1 + (y′(x) + εw′(x))2dx ,

where ε > 0 is a real number, and w(x) is another real function.
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(1) For given functions y(x) and w(x), calculate the following quantity by taking the limit on ε,

δI := lim
ε→0

1

ε

(
I(y(x) + εw(x)) − I(y(x))

)
(2) Define a real function: f(ε) := I(y(x) + εw(x)). Expand it into the Taylor series of ε at ε = 0
for the first three terms, i.e.

f(ε) = f(0) + f ′(0)ε+ (1/2)f”(0)ε2 + o(ε2) .
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