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Research Motivation

Building Transfer Function Model

If we know the transfer function of the potential sliding mass of the dam, we can feed 1n any ground motion
and calculate a deformation using a Newmark sliding block analysis. We’ll run a suite of ground motions
through a series of representative dams using the 2D finite element equivalent-linear code Quad4MU and
build the model by matching the transfer function from the Quad4MU results to the Fourier Amplitude
Spectrum (FAS) from a Single Degree of Freedom (SDOF) oscillator subjected to an impulse motion.

Dam owners and regulators are moving toward risk, but face challenges
in quantifying the seismic risk of dams 1n an efficient manner. The
current practice of estimating seismic risk for dams ranges from
relatively simple qualitative screening approaches to highly quantitative
dynamic analyses that are so costly they are generally only performed
on the highest profile dams where a retrofit 1s expected. Whether a
qualitative or quantitative approach 1s used, epistemic uncertainties in
the hazard and dam response are typically not accounted for and final
risk numbers are often reported as mean risk without uncertainties.
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hazard curves, and the
deformation hazard curves can be
used with fragility curves to
compute risk.

We are working on incorporating the
deformation model into a probabilistic
deformation hazard analysis, where the
probability of exceeding a deformation is
estimated for every earthquake scenario.
This eliminates the need for time history
selection. For this implementation we
need a model for the FAS of the ground
motion and a statistical model of the
phase. We also need to use vibration
theory to estimate the deformations.

This example application uses a site-
specific probabilistic seismic hazard
analysis for a dam site and the SDOF
model to estimate dam deformation. The
three deformation hazard curves use the
median dam response and the 5%, median,
and 95% hazard. All combinations of the
logic tree would produce 81 deformation

Direct Probabilistic Deformation Hazard Analysis

1.0

Ground Motion Selection using
IDA or CSS Approach

MWWMW\W\/«W B

f =f(H, V,PGA)
B=f(H, V,, PGA)

0.8

0.6

0.4

Probability of DS

ky 0.2
0.0 ‘ ‘
1 10
Deformation (cm)

100

100

100

Probabilistic Deformation Hazard Analysis - Risk inputs
Deformation Hazard
Amplitude = 1.E-02
100 9
. Loop sources 21 E0
o Loop magnitudes (M) = k04
g 0.1 . E
» FAS = (M, R) Loop rupture location (R) 2 eos
0'001001 0.1 1 10 ratescenarlo * P (d€f> z | M R) < 1.E-06
Frequency (Hz) 1 Delfgrmation (cm)
w2 Phase Derivative Distribution f f (H V PG A) 10 Dam Fragility
¢ =7(M,R) 2 03
2 008 B=f(H,V, PGA) 95 ;
z g os
£ oo Z 04
=
0 £ 02
2.5 325 62.5 92.5 122.5152.5 182.5 212.5 242.5 0.0 J )
Phase Derivative 1 10
Deformation (cm)
. Logic Tree
Dam Site and Nearby Faults
40.2 7 Seismic Hazard SDOF f, SDOF B

95% 95% 95%

Dam ky

95%

(0.2) (0.2) (0.2)

e Philbrook Median Median Median

(0.2)

Median

Latitude

Butte Meadows East
Spanish Peak

Table Mountain
Background-East

(0.6)

/
\ o

(0.6)

/
\ o

(0.6)

/
\ o

(0.6)

/
\ o

(0.2)

. . A Dam Sit
hazard curves and can be combined witha | 308 ——— — ©0.) ©02) ©02)
. e -121.8 121.6 -121.4 -121.2 -121
logic tree on the fragility curves to Longitude
calculate mean risk with uncertainty.
1. PSHA 2. Ground Motion Selection 3. IDA 4. Deformation Hazard
Hazard with Fractiles UHS Target Spectrum Dam Deformation Deformation Hazard
1.LE+00 =~ ) 1.E-02
...... = = 95% Fractile
LEOL LN == Mean Hazard

1.E-06 0.1

0.01 0.1 1 0.01

PSAatT=0.5s(g)

1.E-06
0.1 1 0.1 1 1 10

Period, T (s) PSAatT=0.5s(g)

Deformation (cm)

@
E P : - E
5 Median Hazard 4 & 2 \'\‘\ = § 1.E-03
$ D N % Fracti ST v 4 ~t 3
S 1.E-02 5% Fractile e _(:‘{7',,/ N Lol ) = =
= CE— TR £ =

<« T et VR = =
3 1E-03 (n[.)' \%h \‘L‘\ E 2 1E-04
S Y L = =
é Q“ AN N\ e —

- | W < \
= 1.E-04 \f‘\“sﬁ-"-‘\‘ \ 8 2 — = with 95% Fractile Haz
w— JHS at 1/10.000 \? . £ |.E-05 with 95% Fractile Haz ™.,
= ’ L 0.1 d g . :
g 1E-05 \.. X %ﬁg 0 rr . i < with Median Haz
< \‘ H1 & H2 from 10 records \ \"\ 80 o Deformations from Model -+ with 5% Fractile Haz
\

100



