
Schematic of distributed fiber-optic sensing of ground deformation: 
(a) landslide and (b) land subsidence

The distributed fiber-optic sensing (DFOS)-based geotechnical monitoring is presently attracting 
immense research interest on the global level. Over the past decade, researchers have 
attempted to detect ground deformation (e.g., landslides and land subsidence; Figure 1) by 
directly embedding FO strain-sensing cables (Figure 2) into soil masses. However, the reliability 
of FO strain measurements remains unclear due to the imperfect attachment of FO cables to soil 
masses. Our goal here is to elucidate the interaction mechanism between cables and soil 
masses toward a better interpretation of FO strain data.
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DISTRIBUTED FIBER-OPTIC SENSING OF GROUND DEFORMATION: 
AN EMPHASIS ON THE ROLE OF CABLE–SOIL INTERFACE

1 RESEARCH AIMS

Figure 1 | 
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2 EXPERIMENTAL SETUP
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Three specially designed FO cables for strain measurement of geologic materials. From left to right: tight-buffed 
polyurethane-coated cable, glass fiber reinforced polymer-reinforced cable, and metal-reinforced cable

Figure 2  | 

The pullout apparatus to investigate the FO cable–soil interaction (unit:mm)Figure 3  | 
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An aluminium tank is constructed to perform displacement-controlled pull-out tests on FO cables 
(Figure 3). The FO cables used here are Nanzee cables specially designed for strain 
measurement of geologic materials (Figure 2). The soil used here is pooly graded sand (SP). 
During pullout, optical measurements are carried out using a Neubrex BOTDA analyzer with a 
spatial resolution of 50 mm and a sampling interval of 10 mm.

Results of the 2-mm diameter tight-buffed 
polyurethane-coated cable are shown here. Twelve sets of 
strain data are obtained (Figure 4). The high-resolution 
strain distribution allow cable–soil interaction to be studied 
in unprecedented detail.

A simplified model (Figure 5) is proposed to describe the cable–soil interfacial behavior during 
the progressive failure process (Figure 4).

Three working states of a FO sensing cable are identified during the course of cable–soil 
interface failure, and a simple criterion to determine the reliability of measured strain data can be 
proposed based on this model.

○ Analytical solutions for the distribution of axial strain and interfacial shear stress and the relationship 
    between pullout force and pullout displacement are derived for each of three pullout phases

○ The cable–soil interface follows an elasto–plastic shear stress–strain constitutive relation
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Figure 5 | A simplified model proposed to describe the FO cable–soil interfacial behavior during progressive failure process
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EXPERIMENTAL RESULTS 3

Evolution of strain distribution along FO cable during progressive 
cable–soil interface failure
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These findings may not only shed light on the cable–soil 
interfacial behavior, but also have important implications 
for interpreting FO strain data and deploying reliable 
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DFOS-based geotechnical instrumentaion. 
In particular, we suggest using anchors to 
enhance the cable–soil interfacial coupling 
for near-surface applications where the CP 
is low, or the soil is loose/highly saturated.
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