

Climate and Hydrological Controls on Riverbed Bioclogging and Implications for Water Resources and Quality

Collaborators: Susan Hubbard, Yoram Rubin, Jan Fleckenstein, Uli Maier, Mary Power, Nigel Chen, Dipankar Dwivedi, Craig Ulrich

Michelle Newcomer Geological Post-Doctoral Fellow LBNL

Top-Down Processes Control Flow and Geochemistry of a Watershed

Climate Type

Fires

Geology

Discharge

Extreme Events

Water & DOC

pulses

Wet/Dry catchments regulate water chemistry (DOC and O_2)

- Land uses regulate infiltration, chemistry, habitats
 - - Geomorphology
 - Sediment
 - Ecology

- Infiltration regime
- Meanders
- Riparian habitat
- Sediment structure
- Banks/Thalwegs
- Agriculture/Pumping

- Hyporheic
- Invertebrates
- Algae
- Biofilms
- Microbes

Observations of cumulative effects

Flow & Reactions

Bottom-Up Feedbacks Contribute to

Cumulative Effects

Pore-Scale Processing of N,C: Aerobic respiration (AR) Anaerobic denitrification (DN)

Local DOC Production, DO regulation

Microbial Transformation of DOC, NO₃ to CO₂, N₂, Bioclogging

GSD controls substrate transport through pores

External DOC, NO₃ inputs

Weather Controls Bankfull Discharge **Events**

Hydrological Connectivity: The Hyporheic Zone as an Organizing Concept

Vertical Exchange in the Hyporheic Zone

Losing: Dominant flow direction down (Mediterranean Climates)

Gaining: Dominant flow direction up (Wet, temperate climates)

 Controls on Recharge, Well Production, Drinking Water Quality, Redox Zonation, Groundwater levels

Horizontal Flow in the Hyporheic Zone

Major Research Questions

- What are the controlling effects of climates and river sediments on the Carbon cycle (C) and Nitrogen cycle (N) in the hyporheic zone?
- Using these feedbacks, can we better predict cumulative watershed effects?
- What are the subsurface contributions to CO₂, N₂ measured in river settings?
- How do top-down extreme events regulate subsurface microbial reactions?

Natural System

<u>Managed System</u> Russian River, CA Riverbank Filtration Mediterranean climate Losing river (Vertical)

East River, CO SFA Watershed (Upper Colorado) Semi-arid, Montane climate Horizontal fluxes

How do coupled hyporheic hydrological-biogeochemical feedbacks range between these conditions?

Temporal Dynamics of Hyporheic Processing Climates and Catchments Control

The Role of Rivers in Mediating These Interactions is Dynamic

- Russian River, CA: Pumping causes water table fluctuations
- Dominantly Losing (Gaining in the Winter)
- Shifting redox zones
- Full disconnection (unsat. zone) during summer

Russian River, CA

High order river

Thriving food web

Measurements

A View of the Subsurface: Evidence of Disconnection

A Strongly Losing River Can Have an Unsaturated Zone

Disconnection

- Seepage is maximized when the unsaturated zone becomes fully developed (higher nutrient fluxes)
- Bioclogging (B) limits flux (dynamic permeability)

Max Flux at steady state when disconnected

Common in Mediterranean Climates

Images from [Brunner et al. 2009]

Field Site Data: Evidence for Bioclogging

Top-Down Controls: Climatic Regulation of Sediments

Sediment Texture for Guerneville Station

Represent sediment parameters K and • as Initial Conditions (IC) within a numerical model

Linking Sediment Parameters to Climate

Methods: Upscale a Bioclogging Pore-Network Model **Colonies Model:**

Monod Kinetics:

Aerobic respiration (AR) Anaerobic denitrification (DN)

$$K_{rel} = \left[\left(\frac{n_{rel} - n_0}{1 - n_0} \right)^b + K_{min} \right] * \frac{1}{1 + K_{min}}$$

- Equations included in **MÍN3P****
- Loosely-coupled approach with Hydrus 1D
- Change initial riverbed conditions (K and Φ) to represent antecedent winter river discharge

• and **K** = f(microbial growth)

- Theoretical permeability model²
- Related laboratory experiments and pore-network models to theory

²Thullner, M. et al. [2002]

1D Numerical Setup

- MIN3P and Hydrus-1D numerical code
- K and Φ change over time in the clogging layer
- Lowering water table from pumping
- Fast vs. slow pumping
- Fast vs. slow biomass growth

Wet year end-member: $\uparrow Q, \uparrow K, \uparrow \Phi$ Dry year end-member: $\downarrow Q, \downarrow K, \downarrow \Phi$

Variable head BC- declining water table

Results: Fast vs. Slow Pumping

Processes Included

- Losing/Gaining
- Disconnection
- IC sediment parameters
- Topography
- Bioclogging
- Including these hydrological and biological processes was enough to predict seasonal trend

Key Findings

Results: Bioclogging Bottom-up Feedback

New Paper!

AGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2015WR018351

Key Points:

- Riverbed bioclogging is a key control on infiltration in losing rivers
- River infiltration gains from disconnection can offset riverbed permeability declines caused by bioclogging
- Permeability reduction can hasten
 the onset of disconnection

Supporting Information:

- Supporting Information S1
- Data Set S1

Correspondence to: Y. Rubin,

Simulating bioclogging effects on dynamic riverbed permeability and infiltration

Michelle E. Newcomer^{1,2}, Susan S. Hubbard³, Jan H. Fleckenstein², Ulrich Maier², Christian Schmidt², Martin Thullner⁴, Craig Ulrich³, Nicolas Flipo⁵, and Yoram Rubin¹

¹Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA, ²UFZ-Helmholtz Centre for Environmental Research, Department of Hydrogeology, Leipzig, Germany, ³Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, California, USA, ⁴UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Leipzig, Germany, ⁵Geosciences Department, MINES ParisTech, PSL Research University, Paris, France

Abstract Bioclogging in rivers can detrimentally impact aquifer recharge. This is particularly so in dry regions, where losing rivers are common, and where disconnection between surface water and ground-water (leading to the development of an unsaturated zone) can occur. Reduction in riverbed permeability due to biomass growth is a time-variable parameter that is often neglected, yet permeability reduction

Feedbacks within the numerical model MIN3P

- Nutrient substrates for biomass growth + K, Φ
- → A novel approach in numerical models • Measure C consumption, biomass growth, CO_2 and N_2 production across the spatial gradient

Processes to include in modeling

- Disconnection
- Pumping
- Initial sediment parameters
- Topography
- Bioclogging from DOC, NO3

Develops an inverted water table

Linking Surface Ecology and Subsurface N,C Transformations

nutrient supply

Top-Down Controls: Stochastic Water Levels Fourier spectrogram of pumping time series

Extract dominant frequencies and create pdf

Sample pdf and reconstruct water levels with imposed dominant frequencies (fast/slow, losing/gaining)

• What is the effect on C, N processing, bioclogging hotspots?

Groups Based on Climate & Seasonality

Fluctuations Lead to Enhanced Bioclogging and Hastened Infiltration Decline

Results: Carbon Transformations are Dependent on River Sediment Structure

Sediment Effects on CO₂ Gas Production

O₂ Concentration

Top-Down Controls: Surface Ecology Stimulates Subsurface Activity

- Lateral hyporheic flow model implemented in MIN3P for the East River Catchment, CO
- Montane, Semi-Arid Climate (Dry winter, wet summer): Climate scenarios projected to reduce streamflow
- Surface Ecology as a source of C and N for subsurface microbes

Benthic Algae Growth and Phytoplankton

 Top-down, hydro-ecological controls on subsurface bioclogging

Winter with at least one storm that resets bed sediments

No storms that reset bed sediments

Representing Horizontal Hyporheic Fluxes

- Simulate spring/summer primary productivity
- Seasonal climatic DOC and DO in surface water
- What happened in the previous winter affects the next spring

The East River: Primary Productivity

Groundwater Discharge? Lagged pulses?

Lateral Hyporheic Flow Model withPrimary ProductivityRiver flow

Variable Pressure Head Boundary

 Simulate spring/summer DO conditions

 Implement as BC in MIN3P model

Elliott & Brooks Head Boundary

$$h_m = 0.28 \frac{U^2}{2g} \begin{cases} \left(\frac{H/d}{0.34}\right)^{3/8} & H/d \le 0.34 \\ \left(\frac{H/d}{0.34}\right)^{3/2} & H/d \ge 0.34 \end{cases}$$

Elevation above msl (m

O2 aq. Concentration (M)

6e-06

8e-06

2e-06

0e+00

-06

4e-06

Without an Ecological Boundary

Anaerobic Biomass

Without an Ecological Boundary

JOH

Important Implications

 Coupled biological, ecological, and physical processes at river beds influence critical ecosystem services:

1) Aerobic subsurface respiration contributing to NPP

2) Anaerobic subsurface denitrification

3) Total infiltration and recharge for ET

Upscaling to the Watershed

- New approaches needed to allow dynamic parameter feedbacks in models
 - Migration to PFLOTRAN
 - Effect on larger scale net primary productivity in rivers?
 - New methods to exchange parameter models and flow models

A special thanks...

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

