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Abstract: A Bayesian model coupled with a fuzzy neural network (BFNN) is developed to alleviate 
the difficulty of using geophysical data in lithology estimation when cross correlation between 
lithology and geophysical attributes is nonlinear. The prior estimate is inferred from borehole 
lithology measurements using indicator kriging based on spatial correlation, and the posterior 
estimate is obtained from updating of the prior using the geophysical data. The novelty of the study 
lies in the use of a fuzzy neural network for the inference of the likelihood function. This allows 
incorporating spatial correlation as well as a nonlinear cross correlation into lithology estimation. 
The effectiveness of the BFNN is demonstrated using synthetic data generated from measurements 
at the Lawrence Livemore National Laboratory (LLNL) site. 
 
1.  Introduction 
 
Heterogeneity of lithology has an important effect on determination of hydrogeological parameters. 
Since traditional methods for characterizing lithofacies rely heavily on expensive and invasive 
lithology core measurements, many efforts have been made to incorporate geophysical data into 
lithology estimation. The crucial part of the incorporation is to connect geophysical data to 
lithology through a possibly complex cross correlation [Copty and Rubin, 1995]. 
 
Several models have been used to estimate lithology from lithology measurements and geophysical 
data, such as indicator kriging, indicator cokriging, and neural networks or fuzzy neural networks. 
Indicator kriging uses only borehole lithology measurements but completely ignores geophysical 
information. Neural networks or fuzzy neural networks, however, use only geophysical data but 
ignore borehole lithology measurements. Indicator cokriging does use both borehole lithology 
measurements and geophysical data, but it is limited when cross correlation between lithology and 
geophysical attributes is highly nonlinear. This study develops an innovative model to incorporate 
geophysical data into lithology estimation using spatial correlation of lithology as well as a 
nonlinear cross correlation between lithology and geophysical attributes. 
 
2.  Bayesian Model 
 
The developed model combines geophysical data with borehole lithology measurements to estimate 
lithology using a Bayesian framework. Let )(xZ  be a categorical random variable at location 
x defined on },,2,1{ dK Λ= , where d  is the total number of lithofacies. Let )( ixz  be a lithology 
measurement at location },,2,1{, nix i Λ∈ and )(1 xg  and )(2 xg  be geophysical data at location x . 
As the Markov assumption is valid [Almeida and Journel, 1994], the Bayesian model is given by  
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where C  is a normalizing constant and )(⋅L  is a likelihood function. ))(( kxZf prior =  is the prior 

probability estimated from lithology measurements using indicator kriging, and ))(( kxZf post =  is 
the posterior probability obtained from updating of the prior using collocated geophysical data 
through the likelihood function. 
 
The key to using this model is to infer the likelihood function from a nonlinear cross correlation 
using a fuzzy neural network. The structure of the fuzzy neural network is similar to the one given 
by Takagi and Sugeno [1985], which consists of several inference rules. The input of the system is 
geophysical data, and the output is the log likelihood with the normalizing constant. We apply all 
fuzzy rules to a given input, and the final result is a combination of the outputs from each rule. 
Training the fuzzy neural network requires estimating the number of rules and parameters 
associated with those rules from a training data set. In this study, we use the fuzzy cluster analysis 
method to identify the number of rules and the Levenberg-Marguardt method to identify the 
parameters.  
 
3.  Case Study 
 
This case study demonstrates the effectiveness of the BFNN in lithology estimation using synthetic 
data generated from measurements at the LLNL site by comparing the BFNN with indicator 
kriging, indicator cokriging and the fuzzy neural network (FNN) that does not use lithology 
measurements. We will generate three two-dimensional random fields: a lithology field with sand 
and silt from borehole lithology measurements using the sequential indicator simulation (SIS) 
[Deutsch and Journel, 1998], a gamma-ray shaliness field conditioned to the previously generated 
collocated lithology and borehole gamma-ray shaliness using the sequential Gaussian simulation 
(SGS) [Deutsch and Journel, 1998], and a resistivity field conditioned to the collocated lithology 
and gamma-ray shaliness using the parameters given by Ezzedine et al. [1999].  
 
The generated litho logy and geophysical data will be used to evaluate the performance of each 
model. We first randomly select eight columns from each generated random field to mimic 
boreholes in a real situation and then use data at those boreholes to train each model. The trained 
models are used to estimate lithology at any testing location, and the total numbers of 
misclassifications are counted according to the minimum distances of testing locations from the 
boreholes for each model.  
 
Figure 1 shows cross correlation between gamma-ray shaliness and electrical resistivity according 
to the data at the boreholes, and it is nonlinear and non-unique. Figure 2 compares performances of 
indicator kriging, indicator cokriging, FNN and the BFNN in terms of percentages of 
misclassifications. It is evident that spatial correlation is important when a testing location is in the 
close vicinity of the boreholes and that cross correlation is important when a testing location is in 
the region far away from the boreholes. Otherwise, both spatial correlation and cross correlation are 
important for lithology estimation.  



 
Figure 1. Cross-plot based on data at the boreholes (dots—sand and squares—silt) 

 

 
 

Figure 2. Model comparison in terms of misclassification, where I=10m is the integral length of 
sand at the LLNL site. The horizontal coordinate is the minimum distance of a testing location from 
the boreholes. 

 
To compare the BFNN with indicator cokriging further and explore nonlinearity effects of cross 
correlation between lithology and geophysical attributes, we generate three two-dimensional 
lithology fields with two, three and four lithofacies, respectively. Following a similar procedure as 
before, we generate two-dimensional geophysical data for each lithology field and select several 
columns as boreholes. After training each model using the data at the boreholes, we can estimate 
lithology at any given location and compare the estimated results with the true values to evaluate 
model performances. The nonlinearity of cross correlation between lithology and geophysical 
attributes generally increases with the increase of the number of lithofacies. Testing results show 
that when there are two lithofacies, the BFNN and indicator cokriging have similar performances in 



lithology estimation. However, the BFNN has a much better performance than indicator cokriging 
as the number of lithofacies or nonlinearity of cross-correlation increases. 
 
4.  Discussion 
 
The BFNN is the most effective model for incorporating geophysical data into lithology estimation 
among indicator kriging, indicator cokriging, FNN and the BFNN. The BFNN has a similar 
performance as kriging when an estimating location is close to boreholes and a similar performance 
as FNN when an estimating location is far away from boreholes. The BFNN is particularly useful 
compared to indicator cokriging when cross correlation between lithology and geophysical 
attributes is highly nonlinear. 
 
Although the BFNN is oriented toward the LLNL project where we have two different geophysical 
attributes that have been shown most informative to lithology estimation, it can be directly used for 
the cases where there are more than two types of geophysical data, such as in Doveton [1986]. The 
reason is that the fuzzy neural network can be used to extract complex patterns inherent in multi-
dimensional data, which are very difficult to be extracted using other methods. 
 
The limitation of the fuzzy neural network lies in the assumption that each variable is 
approximately parallel or perpendicular to axes, which is valid for many applications. In other 
cases, however, we need to either rotate coordinates using the principal component analysis or 
develop a more general neural network to estimate likelihood functions. 
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