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Abstract We present a methodology for calculating the conditional temporal moments of 
kinetically sorbing solutes based on the conditional temporal moments of non-reactive 
tracers. The methodology is based on a Lagrangian description of solute transport in 
heterogeneous media, and it can be applied to a large variety of flow configurations and 
mass-transfer rate- limited processes. A stochastic approach is needed, as a deterministic 
description of the velocity field is usually not available. Conditioning the temporal 
moments on hydraulic conductivity or transmissivity measurements improves the 
accuracy and reduces the uncertainty in the results, as shown by a reduction in the 
variance of the travel time. We present results showing the effect of the geochemical 
parameters on the reduction in uncertainty obtained by conditioning.  
 
 
INTRODUCTION  
 
The moments of breakthrough curves (BTCs) in heterogeneous domains are usually 
analyzed using the travel time approach. Temporal moments are useful when 
characterizing subsurface transport, because concentrations measured in field tracer 
experiments are usually measured at various times at one or several locations 
downstream. In addition, regulations often concern the probability of exceeding a certain 
concentration before a certain time. Due to imperfect knowledge of the subsurface, the 
travel time, τ, that is, the time for a particle to move from the input to the measurement 
location, cannot be fully predicted. The stochastic approach consists of considering τ as a 
Space Random Function (SRF) and deriving its statistical moments. Uncertainty in τ can 
be reduced by conditioning on hydrogeological or geophysical data. 
 
In Lawrence et al. (submitted), we present a concise methodology for estimating the 
conditional moments of BTCs for non-conservative solutes as a function of the 
conditional temporal moments of conservative solutes based on a Lagrangian 
methodology. We consider heterogeneous hydrological parameters, and homogeneous 
geochemical parameters. We find a general expression for the expected BTC of a reactive 
solute undergoing chemical reactions in a heterogeneous hydraulic conductivity field. 
The conditional temporal moments, valid independently of flow configuration, are 
derived for the general model proposed by Haggerty and Gorelick (1998), which 
considers a continuous distribution of mass transfer rate coefficients. This paper briefly 
summarizes the method used in Lawrence et al. (submitted) and shows the effect of the  
geochemical parameters in the two-site kinetics model on the reduction of uncertainty 
due to conditioning.  
 
 



MATHEMATICAL STATEMENT OF THE PROBLEM AND GENERAL 
SOLUTION 
 
We consider a non-conservative solute traveling from an injection point to a discharge 
location. The solute follows a certain streamline, which is unknown due to heterogeneity. 
Along this streamline, we can write the advection-dispersion equation, which includes a 
term that accounts for mass transfer between a mobile and an immobile phase. We use 
the general model proposed by Haggerty and Gorelick (1998), which considers a 
continuous distribution of mass transfer rate coefficients. Several common models, such 
as instantaneous equilibrium, two-site kinetics, and a lognormal distribution of rate 
parameters, can be obtained as special cases of this model. Disregarding the influence of 
pore-scale dispersion, the resulting equations are:  
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where C1 is the mobile concentration per unit volume of fluid; C2 is the immobile 
concentration per unit mass of soil; V is dimensionless velocity (V= v / U, where v is the 
actual velocity, and U is the mean velocity);  T is dimensionless time (T = U t / IY , where 
t is actual time, and IY is the integral scale of the log-hydraulic conductivity, Y, in the 
mean flow direction); η is the coordinate along the streamline, non-dimensionalized by 
IY; β tot is the dimensionless total capacity coefficient; and ( )αp  represents the volumetric 
fraction of the solid that reacts at a particular rate, α , where α  is a dimensionless mass 
transfer rate coefficient.  
 
The distance from the injection point to the control point or plane, non-dimensionalized 
by YI , is L. For a pulse of concentration injected at time zero into a clean aquifer, the 
initial conditions are ( ) ( ) 00T,C0T,C 21 ==η==η , and the boundary conditions are 

( ) 0T,C1 =∞→η , and ( ) ( )tT,0C1 δ==η . After applying the Laplace transform to 
equations (1) and (2) under these conditions, the resulting equation for C1(η,t) is (after 
Rubin et al., 1997): 
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where s is the Laplace variable, and an overbar indicates the Laplace transform of a 
variable. Because the geochemical parameters are considered homogeneous, H does not 



depend on location, but only on s and the parameters used to characterize )(p α . For a 
unit pulse injection, the concentration at the control point or plane at a distance L 
downstream is  
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)L(  corresponds to the travel time of a conservative tracer along the 

trajectory from the injection point (η=0) to the control point or plane (η(L)). In this 
approach V and η, and thus τ, are SRFs. Therefore, it is better to work with the 
conditional expectation of the breakthrough curve, given by  
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where C stands for conditional. By Aris (1958), the non-central reactive moments of the 
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the first two conditional reactive central temporal moments (mean and variance) are 
obtained:  
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where R and NR stand for reactive and non-reactive solutes, respectively. Notice that the 
derivation is general, and therefore valid regardless of flow configuration or 
dimensionality of the problem. The non-central conditional temporal moments for 
conservative tracers )L(tC

i  can be obtained from the conditional cumulative distribution 
function (CDF) of τ , GC(L, τ ), as: 
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where ( ) >τ< 1X  is the mean displacement, and )(X11 τ  is the second moment of the 
longitudinal displacement. Conditioning can take into account all available 
measurements, such as transmissivity values, heads, velocities, and geophysical data.  
 
 
ILLUSTRATIVE EXAMPLES 
 
The geochemical model corresponding to a solute that undergoes reactions limited by 
two-site kinetics depends on four parameters: the capacity coefficients, 1β  and 2β  

)( 21tot β+β=β ; and the rate parameters, 1α  and 2α . The function ( )αp  is given by  
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To study the efficiency of conditioning, we use results from Rubin (1991), who gave 
several examples of the effect of conditioning with transmissivity values on statistical 
moments of conservative tracers. In particular, we select one example that corresponds to 
conditioning by 9 transmissivity values located at dimensionless distances D=1.25 x i 
(i=0,1,…,8) downgradient from the point of injection. The mean and covariance of the 
longitudinal displacement are given as curve d in Figures 7a and 7b in Rubin (1991). 
From (12), the conditional CDF of τ is obtained. Then, we can compute the moments in 
(9) and (10).  
 
We define a parameter that accounts for the reduction in variance of travel time from the 
unconditional to the conditional case.  
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Figure 1: Effect of 1α  on the percent reduction in the travel time variance due to conditioning 
for three different cases of the two-site model. For all curves, 5.021 =β=β , 1.02 =α , and 

5.02
Y =σ .  

 

 
Figure 2: Effect of 1β  and 2β  on the percent reduction in the travel time variance due to 
conditioning for three different cases of the two-site model. For all curves, 101 =α , 1.02 =α , 

and 5.02
Y =σ .  



 
Figure 1 shows the effect of changing one of the rate parameters on the percent reduction 
in the travel time variance due to conditioning. For all three curves, 5.021 =β=β , 

1.02 =α , and 5.02
Y =σ . As 1α  decreases from 10 to 0.001, conditioning becomes less 

effective, as shown by the decrease in the  percent reduction of the travel time variance. 
However, even when 001.01 =α , conditioning is still important, reducing uncertainty by 
over 40% near the source. Because transport of solutes undergoing instantaneous 
equilibrium reactions are governed by the same equations as non-reactive transport, with 
only a rescaling of the velocity and diffusion coefficient to account for the retardation 
factor, the effect of conditioning for the case of instantaneous equilibrium may be similar 
to the effect on non-reactive transport. Rubin (1991) obtained a percent reduction of 
travel time variance of over 80% near the source for a conservative tracer using the data 
that this example uses. The increased effect of conditioning for larger rate parameters can 
be understood by noting that as the rate parameter increases, the solute can exchange with 
the immobile phase more quickly, approaching the case of instantaneous equilibrium. 
Therefore, results for increasingly larger rate parameters would be expected to increase to 
approach the value found by Rubin (1991) for non-reactive solutes. 
 
The effect of conditioning decreases with increasing travel distance. The reason is that 
the data extends only to a distance of 10 integral scales. One would expect that when the 
solute has traveled a large number of integral scales without additional conditioning data, 
the effect of conditioning would be null. In any case, the effect at a distance of 15 integral 
scales is still quite significant.  
 
Figure 2 shows the effect of changing the proportion of sorption sites associated with 
each rate parameter, while keeping the total capacity coefficient constant at 1. The 
combination of rate parameters with the largest reduction in uncertainty from Figure 1 is 
used, that is 101 =α , 1.02 =α . Again, 5.02

Y =σ . Notice from Figure 2 that as 1β  
increases, the percent reduction of variance due to conditioning increases. As 1β  
increases, more of the sorption sites are associated with 1α , the higher rate parameter. 
One would expect the percent reduction of variance to increase when more sorption sites 
have a high rate parameter, because it increases in Figure 1 when 1α  increases. 
 
Figure 3 shows the effect of the total capacity coefficient on the percent reduction of 
travel time variance due to conditioning. 21 β=β  for all three curves.  Again, 101 =α , 

1.02 =α , and 5.02
Y =σ . As the total capacity coefficient increases, the effect of 

conditioning increases. Although this may make it appear that there is less uncertainty for 
large values of the capacity coefficients after conditioning, that is not the case. The larger 
values of the capacity coefficients result in much larger unconditional and conditional 
travel time variances. However, conditioning causes a more significant change when the 
capacity coefficients are large. Therefore, in aquifers with large capacity coefficients, 
conditioning can be extremely helpful. For example, when the total capacity coefficient is 
100, for a distance around five integral scales downgradient from the source, conditioning 
reduces the travel time variance by over 75%. 



 

 
Figure 3: Effect of total β  on the percent reduction in the travel time variance due to 

conditioning for three different cases of the two-site model. For all curves, 101 =α , 1.02 =α , 

and 5.02
Y =σ . 

 
 
CONCLUSIONS 
 
Based on a Lagrangian approach to solute transport in heterogeneous media, we develop 
a concise and integrated methodology for evaluating the conditional temporal moments 
of a reactive solute. The obtained temporal moments are valid for different flow 
configurations, including convergent flow. The methodology can also be applied to a 
very wide range of linear mass-transfer rate- limited processes, which can be considered 
special cases of the continuous model of Haggerty and Gorelick (1998). The dependence 
of the temporal moments on only the chemical parameters and the temporal moments of a 
non-reactive tracer reduces computational effort, because the moments of the non-
reactive tracer can be calculated once, and then used repeatedly with the applicable 
chemical parameters. 
 
For the two-site kinetics model, the effect of conditioning was investigated for different 
values of the model parameters. Conditioning is most effective when the rate coefficients 
are high and the capacity coefficients are large. In all cases investigated, conditioning 
provided significant improvements over the unconditional case, in terms of the percent 
reduction in the travel time variance. 
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