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Abstract. This study presents a stochastic, three-
dimensional characterization of a heterogeneous hydraulic
conductivity field within the Hanford 300 Area, Washing-
ton, USA, by assimilating large-scale, constant-rate injec-
tion test data with small-scale, three-dimensional electro-
magnetic borehole flowmeter (EBF) measurement data. We
first inverted the injection test data to estimate the transmis-
sivity field, using zeroth-order temporal moments of pres-
sure buildup curves. We applied a newly developed Bayesian
geostatistical inversion framework, the method of anchored
distributions (MAD), to obtain a joint posterior distribution
of geostatistical parameters and local log-transmissivities at
multiple locations. The unique aspects of MAD that make
it suitable for this purpose are its ability to integrate multi-
scale, multi-type data within a Bayesian framework and to
compute a nonparametric posterior distribution. After we
combined the distribution of transmissivities with depth-
discrete relative-conductivity profile from the EBF data, we
inferred the three-dimensional geostatistical parameters of
the log-conductivity field, using the Bayesian model-based
geostatistics. Such consistent use of the Bayesian approach
throughout the procedure enabled us to systematically incor-
porate data uncertainty into the final posterior distribution.
The method was tested in a synthetic study and validated us-
ing the actual data that was not part of the estimation. Results
showed broader and skewed posterior distributions of geosta-
tistical parameters except for the mean, which suggests the
importance of inferring the entire distribution to quantify the
parameter uncertainty.

Correspondence to:Y. Rubin
(rubin@ce.berkeley.edu)

1 Introduction

Hydrogeological characterization plays a key role in various
projects involving groundwater flow and contaminant trans-
port. A detailed three-dimensional (3-D) description of spa-
tial variability in subsurface hydraulic properties is impera-
tive for predicting water and solute movement in the subsur-
face (Rubin, 2003). Recent focus on geochemical and mi-
crobiological reactions in field studies, for example, requires
flow parameters to be fully characterized a priori for testing
their research hypotheses (Scheibe et al., 2001; Scheibe and
Chien, 2003; Fienen et al., 2004).

One of the main challenges in hydrogeological character-
ization is to integrate datasets of different types and scales.
Typical field studies usually include two or more different
complementary sources of information, which may include
depth-discrete small-scale data such as core analysis, slug
tests and electromagnetic borehole flowmeter (EBF) tests
and large-scale data such as pumping tests and tracer tests.
With stochastic modeling of flow and transport becoming
increasingly common, it is important not only to combine
best-fitted values from each dataset, but also to correctly
quantify and weigh errors and uncertainty associated with
different datasets, and to transfer the uncertainty to the fi-
nal prediction (Maxwell et al., 1999; Hou and Rubin, 2005;
De Barros et al., 2009).

To tackle this challenge, various researchers have applied
Bayesian approaches to the problem of subsurface charac-
terization (Copty et al., 1993; Woodbury and Rubin, 2000;
Chen et al., 2001). Within a Bayesian framework, the prob-
ability density function of a parameter vector can be up-
dated sequentially to include more datasets in a consistent
manner. In addition, the resulting predictive distribution can
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properly account for the parameter uncertainty inherent in
estimating the parameter values from the data (Diggle and
Ribeiro, 2002). Two recent developments in particular have
increased the potential of the Bayesian approach for subsur-
face characterization: (1) Bayesian model-based geostatis-
tics, and (2) the method of anchored distributions (MAD).

Bayesian model-based geostatistics, introduced by Ki-
tanidis (1986) and Handcock and Stein (1993), assumes a
parametric model for a spatial stochastic process and in-
fers geostatistical structural parameters based on small-scale
datasets or point measurements (Diggle and Ribeiro, 2006).
While the traditional variogram approach determines best-
fitted estimates of geostatistical structural parameters and
their asymptotic confidence interval, the Bayesian model-
based approach yields a posterior distribution of the parame-
ters. Diggle and Ribeiro (2006) showed that correlation pa-
rameters such as variance and scale follow non-Gaussian and
skewed distributions, which suggests that the first two mo-
ments are not enough to characterize the distribution.

The method of anchored distributions (MAD) is a gen-
eral Bayesian method for inverse modeling of spatial ran-
dom fields that addresses complex patterns of spatial vari-
ability, multiple sources and scales of data available for char-
acterizing the fields, and the complex relationships between
observed and target variables (Zhang and Rubin, 2008a, b;
Rubin et al., 2010). The central element of MAD is a new
concept called “anchors”. Anchors are devices for localiz-
ing large-scale data: they are used to convert large-scale,
indirect data into local distributions of the target variables.
The goal of the inversion is to determine the joint distribu-
tion of the anchors and structural parameters, conditioned
on all of the measurements. The structural parameters de-
scribe large-scale trends of the target variable fields, whereas
the anchors capture local heterogeneities. Following the in-
version, the joint distribution of anchors and structural pa-
rameters can be directly used to generate random fields of
the target variable(s). Different from most of the other inver-
sion methods that determine a single best estimate of the field
and asymptotic uncertainty bounds (Kitanidis, 1995; Zhu and
Yeh, 2006; Ramarao et al., 1995), MAD yields a posterior
distribution of the parameters.

In this paper, we assimilate EBF tests and constant-rate
injection tests for characterizing a 3-D hydraulic conduc-
tivity K field at the Integrated Field Research Challenge
(IFRC) site in the Hanford 300 Area (http://ifchanford.pnl.
gov). Since the EBF tests yield only relativeK values along
each of the EBF test wells, we need a local transmissivityT

value at each of the EBF test wells to convert the relative val-
ues to absoluteK values (Javandel and Witherspoon, 1969;
Molz et al., 1994; Young et al., 1998; Fienen et al., 2004).
The localT values can be determined by inverting the large-
scale constant-rate injection tests. This assimilation requires
us to quantify the uncertainty inT values based on the injec-
tion tests and to combine that uncertainty with the one from
the EBF data.
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Fig. 1. Site map of the IFRC site (The coordinate system follows
the convention used at the Hanford site).

The particular difficulty in inverting injection-test or
pumping-test data is the computational effort associated with
a long time series. Li et al. (2005) and Zhu and Yeh (2006)
have applied temporal moments of drawdowns to estimate
T and storativityS fields. The sandbox experiment by Liu
et al. (2007) has shown that the moment approach can suc-
cessfully characterize aT field. The advantage of employ-
ing temporal moments is that we can compute them using
steady-state flow equations, which can reduce the computa-
tional burden significantly. In addition, when the interest is
limited to T , the zeroth-order temporal moment can elimi-
nate the effects of the uncertainty inS, since it does not de-
pend onS (Zhu and Yeh, 2006).

In the following sections, we first describe the site and the
experimental procedure. We then present our approach, in-
cluding the geostatistical inversion framework and the infer-
ence of the 3-D geostatistical parameters. After presenting
the inversion results in a synthetic study to demonstrate and
verify our approach, we discuss the results using the actual
data at the site.

2 Site and experiment description

The Hanford 300 Area is located at the southern part of the
Hanford Nuclear Reservation one mile north of Richland,
Washington, USA. The IFRC site is located within the foot-
print of a former disposal facility for uranium-bearing liq-
uid wastes known as the South Process Pond, approximately
250 m west from the Columbia River. As is shown in Fig. 1,
the triangular well field consists of 25 wells fully screened
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through the saturated portion of the Hanford formation, ten
wells partially screened at different depths, and one deep
characterization well (Bjornstad et al., 2009).

In this study, we focus on the saturated portion of the
highly permeable and coarse-grained Hanford formation,
which is a shallow unconfined aquifer. The main lithol-
ogy is a poorly sorted mixture, dominated by gravel up to
boulder size, with lesser amounts of sand and silt (Bjorn-
stad et al., 2009). It overlies the Ringold formation, the up-
per portion of which is a continuous low-permeability layer
consisting of cohesive and compact, well-sorted fine sand
to silty sand. The saturated thickness is variable over the
site, ranging from about 5 m to 8 m, with daily and seasonal
fluctuations of the water table in response to changes in the
river stage. The prior estimates of hydraulic conductivity are
1000–100 000 m/day for the Hanford formation and 0.01–
3.00 m/day for the Ringold formation (Meyer et al., 2007).

The aquifer in the Hanford formation has been very dif-
ficult to characterize, since typical methods, such as perme-
ameter tests and slug tests, do not provide reliable results
due to the coarse-grained and highly permeable nature of
the aquifer (Meyer et al., 2007; Newcomer, 2008; Vermeul
et al., 2009). In addition, traditional analysis of pumping
and injection tests yields only the averaged property over
a large domain, since the zone-of-influence expands very
rapidly. Combining EBF tests and injection tests through
inverse modeling is one of the few feasible alternatives to
characterize the 3-D heterogeneous structure of the aquifer.

Fourteen constant-rate injection tests were conducted,
each of which had one injection well and 7 to 10 obser-
vation wells. All the wells used in the tests are fully
screened over the saturated portion of the Hanford forma-
tion. The distance between the injection and observation
wells ranges between 8 and 60 m. The injection duration
and rate are approximately 20 min and 315–318 gpm (1.19–
1.20 m3 min−1), respectively. The preliminary analysis of
the late-time curve data, using the Cooper-Jacob straight-
line method, has shown that most of the observation wells
yield similar estimates for theT values in each test, which
is considered to be the geometric mean ofT , TG, over the
entire well field, as is mathematically proved by Sánchez-
Villa et al. (1999). It suggests that the zone-of-influence ex-
pands very rapidly and the conventional pumping test analy-
sis yields only an effective property, smoothing out the local
heterogeneity at the well field.

The EBF test data were obtained at 19 fully screened
wells, which yielded 283 depth-discrete relative hy-
draulic conductivities with 0.3–0.6 m depth intervals.
The pumping rate was 1.04–1.55 gpm (3.94×10−3–
3.94×10−3 m3 min−1), and kept constant during the test at
each well. The vertical profiles indicated that the hydraulic
conductivity over the central third of the Hanford formation
was lower than its top and bottom thirds at many of the
wells. Although the thickness and contact depths for
this lower permeability material vary across the site, this

general pattern was observed to some extent at most of the
monitoring well locations.

The more detailed description of the site and data is avail-
able in Bjornstad et al. (2009) and Rockhold et al. (2010).

3 Methodology

For the 3-D characterization, we employ a two-step approach
to combine the EBF and injection-test data. First, we in-
vert the large-scale injection tests to characterize the 2-DT

field. We apply MAD to invert the zeroth-order moments of
pressure build-up curves at multiple observation wells. As
a result, we obtain a joint posterior distribution ofT at the
EBF test wells. Second, we combine this distribution with
the EBF data for determining the absoluteK values. Instead
of a singleK value at each of the EBF data point, we obtain
the distribution ofK at each point. Based on the distribution
of the absoluteK, we infer the 3-D geostatistical parameters,
using the Bayesian model-based geostatistics.

Compared to direct coupling of the EBF and pumping tests
used in Li et al. (2008), this two-step approach has a sig-
nificant computational advantage. This approach is possi-
ble because we can model the flow process during the injec-
tion tests as 2-D planar flow in the horizontal plane, due to
the particular site conditions as the following. The coarse-
grained and highly permeable nature of the aquifer caused
the elastic response and drainage effect to occur very rapidly
(less than 30 s after the injection started), so that the radial
flow regime dominated the pressure buildup responses (Neu-
man, 1975). In addition, despite the large injection rate, the
maximum pressure buildup at the nearest observation wells
was less than several centimeters, which is much smaller than
the aquifer thickness (5–8 m). Although the EBF tests sug-
gested vertical heterogeneity in the saturated zone, Dagan et
al. (2009) recently showed that Dupuit’s assumption is still
valid – when the aquifer thickness is not large compared to
the vertical integral scale, and the ratio between the vertical
and horizontal integral scale is large, which is the case at this
site.

3.1 Geostatistical inversion for transmissivity field

3.1.1 MAD framework

In this section, we summarize the Bayesian inversion frame-
work, called (as indicated above) method of anchored distri-
butions (MAD), which we use to invert the injection test data.
This method was introduced by Zhang and Rubin (2008a, b)
and Rubin et al. (2010) and is summarized here for complete-
ness.

We denote a spatial random process byY (x), wherex is
the space coordinate. We further denote an entire field ofY

by a random vector̃Y , and denote a realization of the field
by ỹ. The dimension ofỸ and ỹ is equal to the number
of elements in the discretized field. The fieldỸ is defined
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through the vector of model parameters{θ ,ϑ}. Theθ part of
this vector, called the structural parameter vector, includes a
set of parameters designed to capture the global features of
Ỹ , such as the mean of the field and correlation structures.
Theϑ component of this vector consists of the anchored dis-
tributions, or anchors in short. Anchors are devices used to
capture local features of̃Y that cannot be captured by the
global parametersθ . In their simplest form, an anchor would
be error free measurements ofY . Other forms of anchors in-
clude measurements coupled with error distributions and/or
anchors that are obtained by inversion.

The dataz is a vector of multiple observations of a physi-
cal process. The data can be described by the following equa-
tion:

z =M
(
ỹ
)
+ε, (1)

whereM is a known function, or a set of functions, numer-
ical or analytical, of the spatial field, andε is a vector of
zero-mean errors. The goal of the inversion is, first, to derive
a posterior distribution of the model parameters conditioned
on the dataz, p(θ ,ϑ |z). This distribution then allows us to
generate multiple realizations of the fieldỸ for prediction.

Using Bayes’ rule, we can define the posterior distribution
of parameters as:

p(θ,ϑ |z) ∝ p(z|θ,ϑ)p(ϑ |θ)p(θ). (2)

wherep(θ) is the prior distribution,p(ϑ |θ ) is the anchor dis-
tribution given a structural parameter vectorθ , andp(z|θ ,ϑ)
is the likelihood of dataz given a parameter set{θ ,ϑ}.

We estimate the likelihoodp(z|θ ,ϑ) using the Monte
Carlo simulations. Since the model parameters{θ ,ϑ} and
the dataz are connected through the field, we generate mul-
tiple conditional realizations of the field̃Y for any given
{θ ,ϑ}; with each realization, the forward model provides a
prediction ofz in the form of z̃, according to Eq. (1). In
other words,z is viewed as a measured outcome from a ran-
dom process, whereasz̃ is one of many possible realizations,
given a particular parameter set of{θ ,ϑ}. By generating ran-
dom fields for a given parameter set{θ ,ϑ} and simulating
the physical process on each field, we obtain multiple real-
izations ofz̃, i.e., an ensemble ofz̃. The ensemble of̃z is then
used for estimating the probability density function (pdf) of
z̃. After determining the pdf, it is straightforward to calculate
the density at a pointz, p(z|θ ,ϑ), which is the likelihood.

As the dimension ofz increases, a larger number of re-
alizations ofz̃ are necessary to estimate the pdf accurately,
which increases the computational burden. To accommodate
the large-dimensional data, we may divide the vectorz intoL

segments asz = {z1,z2,...,zL}. We can decompose the like-
lihood into each segment as,

p(z|θ,ϑ) = p(z1,...,zL|θ ,ϑ)

= p(zL|z1,...,zL−1,θ ,ϑ)

p (zL−1|z1,...,zL−2,θ ,ϑ)....

p (z2|z1,θ ,ϑ)p (z1|θ ,ϑ)

≈

L∏
l=1

p(zl |θ ,ϑ). (3)

In Eq. (3), we assume that the data segmentsz1, z2,. . . ,
zL are conditionally independent for a given{θ ,ϑ}, since
we consider that{θ ,ϑ} contains information equivalent to
the data. This equality strictly holds when the data seg-
ments are independent of each other – for example, when the
data locations are beyond the zone-of-influence or zone-of-
correlation. It approximately holds when the data segments
are only weakly correlated, such as with different types of
data at the same site. As Hou and Rubin (2005) pointed out,
assuming independence leads to higher entropy and makes
the estimation less informative.

3.1.2 Specification of a 2-D geostatistical model

Here we specify the geostatistical model for the 2-DT field.
LetY (x) be natural-log transmissivity, lnT (x), at the location
x = (x1, x2) in the 2-D domain. We assume that a vectorY ,
containingY at multiple locationsx, follows a multivariate
Gaussian distribution with exponential covariance. We de-
fine a structural parameter vector asθ = {µ,σ 2,φ}, including
uniform meanµ, varianceσ 2, and integral scaleφ, which are
used at a geologically similar site (i.e. unconsolidated glacial
materials) (Rubin, 2003; McLaughlin et al., 1993).

We define a vectorϑ(xϑ ) to represent a set of anchors.
Since the anchors are a subset of the field,p(ϑ |θ ) is a
multivariate Gaussian distribution with meanµ and covari-
anceσ 2R(2-D)(xϑ ,xϑ ), where R(2-D)(xϑ ,xϑ ) is an auto-
correlation matrix as a function ofφ and the locations of
ϑ , xϑ . The distribution ofY conditioned on the structural
parameters and anchorsp(y|θ ,ϑ) is a multivariate Gaussian
distribution with conditional meanµY |ϑ and conditional co-

varianceσ 2R(2-D)
Y |ϑ , where the mean and covariance condi-

tioned on the anchors are defined as

µY |ϑ = µ+R(2-D)(x,xϑ )R(2-D)(xϑ ,xϑ )−1(ϑ −µ),

R(2-D)
Y |ϑ = R(2-D)(x,x)−R(2-D)(x,xϑ )R(2-D)(xϑ ,xϑ )−1R(2-D)(xϑ ,x) (4)

whereR(2-D)(x,x) is the auto-correlation matrix forY , and
R(2-D)(x,xϑ ) is the cross-correlation matrix betweenY and
ϑ .

3.1.3 Specification of likelihood

We consider the dataz consisting ofL injection tests (l = 1,
2, . . . ,L). We dividez into L segments asz = {z1,z2,...,zL},
wherezl is the vector containing the zeroth-order moments at
multiple observation wells in thel-th injection test. The gov-
erning equation and the temporal moment formulation are
shown in Appendix A.

In order to determine the likelihoodp(z|θ ,ϑ), we first
compute the likelihood in each injection testp(zl |θ ,ϑ).
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Since we found in the forward modeling analysis that the
zeroth-order moments are approximately Gaussian, we use
a multivariate Gaussian distribution for the likelihood esti-
mation. Although nonparametric density estimation is avail-
able, the Gaussian-likelihood estimation is computationally
advantageous as the dimension of the data increases.

Using the ensemble of̃zl simulated on the multiple fields
conditioned on each parameter set{θ ,ϑ}, we calculate the
mean and covariance to determinep(zl |θ ,ϑ) (Robert and
Casella, 2005). When we include the multiple injection tests
in the inversion, we multiply the likelihoods of multiple tests,
according to Eq. (3), to obtain the likelihood for the entire
datap(z|θ ,ϑ). We have observed that the zeroth-order mo-
ments from the different injection tests are not strongly cor-
related, so that we may use Eq. (3).

3.1.4 Placement of anchors

The success of MAD depends on placement of the anchors
from two reasons. First, careful placement of anchors will
maximize their ability to extract information from observa-
tions. Second, the computational burden is linked to the num-
ber of anchors, and a smaller number would improve com-
putational efficiency. Hence, we need to place anchors (1) at
sensitive locations to the data, (2) to capture local features of
the field, and (3) according to the goal of the inversion. A
detailed discussion is available in Rubin et al. (2010). Here
we discuss the issues relevant to our inversion.

First, to find sensitive locations, we refer to the sensitiv-
ity analysis. Li et al. (2005) has formulated the sensitivity of
zeroth-order moments to a lnT value at a specific location,
using the adjoint-state method (Sun, 1994). For the current
estimate ofT field required in the sensitivity analysis, we
may use a uniformT field, since our priors are only for the
global parameters (i.e., mean, variance, and scale) and we
do not have any local information before the injection test.
In this case, sensitivity is high around observation well lo-
cations, which is consistent with findings by Castagna and
Bellin (2009) and Vasco et al. (2000).

Second, to capture heterogeneity, we would ideally have
more than one anchor per integral scale. Although the real
integral scale is not known in advance, we may consider the
minimum possible integral scale at the site. Anchors outside
the well plot, far from any of the observation wells, are not
effective in resolving spatial heterogeneity, so that we need
fewer anchors outside the well plot.

Third, to achieve our goal, which is to obtain the lnT val-
ues at the EBF well locations, we need anchors at all EBF
well locations. All the EBF wells are used as observation
wells during the injection tests, so that we do not need addi-
tional anchors for this purpose.

3.2 3-D geostatistical model for hydraulic conductivity
field

The 2-D inversion of the injection tests yielded a joint dis-
tribution of lnT at the EBF well locations. Since we placed
anchors at all those locations, we can use the anchor distribu-
tion directly. Let us denote the lnT values at the EBF well lo-
cation by a vectorϑEBF, which is a subset ofϑ . Marginaliz-
ing the other parameters leads to the posterior distribution of
ϑEBF conditioned on the injection test dataz asp(ϑEBF|z).

Let K(x1, x2, x3) andk(x1, x2, x3) be the absolute and
relative K values at the locationx = (x1, x2, x3) in the 3-
D domain, respectively. Based on Javandel and Wither-
spoon (1969), we have the correlation between the absolute
and relativeK values asK(x1, x2, x3) = T (x1, x2)k(x1, x2,
x3) /b(x1, x2) (Moltz et al., 1994; Fienen et al., 2004), where
b(x1, x2) is the aquifer thickness at the horizontal location
(x1, x2). We can then determine the natural log-conductivity
u = lnK at (x1, x2, x3) by

u(x1,x2,x3) = ϑEBF(x1,x2)−lnb(x1,x2)+lnk(x1,x2,x3).(5)

We use aN -vectork containing all the relative conduc-
tivity values from the EBF data atN locationsx, and aN -
vectoru containing all the lnK values at the same locations
ask. Equation (5) allows us to combinek andp(ϑEBF|z)

into p(u|k,z), which is the distribution ofu conditioned on
both the injection test data and the EBF data.

We construct a 3-D geostatistical model, assuming that
u(x) follows a multivariate Gaussian distribution with mean
β and covariance (η2R(3-D)(x,x)+ ν2I), whereη2 is the vari-
ance of variability in lnK, R(3-D)(x, x) is the auto-correlation
matrix foru(x) as a function of the locationsx, the horizon-
tal integral scaleλh and the vertical integral scaleλv, I is the
identity matrix of orderN , andν2 is the nugget, which repre-
sents the EBF measurement errors. The structural parameter
vector of the 3-D geostatistical model is{β,η2,λh,λv,ν

2
}.

Our goal here is to obtain a joint posterior distribution of the
parameters conditioned on both data{k,z} throughu:

p
(
β,η2,λh,λv,ν

2
|k,z

)
=

∫
p

(
β,η2,λh,λv,ν

2
|u

)
p(u|k,z)du. (6)

For the prior distribution of the parameters, we assume the
Jeffreys prior for the mean and variance (Jeffreys, 1946),
which is the least informative prior for those two parame-
ters. The prior distribution of all the structural parameters is
defined as

p
(
β,η2,λh,λv,ν

2
)

∝
1

η2
π

(
λh,λv,ν

2
)
. (7)

For the rest of the prior distributionπ (λh,λv,ν
2), we use

an independent uniform distribution for each of{λh,λv,ν
2
}

bounded by each set of the minimum and maximum possi-
ble values. Following Diggle and Ribeiro (Chapter 6, 2006),
we obtain an analytical expression forp(β,η2,λh,λv,ν

2
|u)
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Fig. 2. Configuration of injection and observation wells in each test
used in this paper. The reference point of local coordinates is at
(594 164 m, 115 976 m) in the Hanford coordinates.

(Appendix B). In addition, based on the joint distribu-
tion of the structural parameters andu, determined by
p(β,η2,λh,λv,ν

2,u|k,z) = p(β,η2,λh,λv,ν
2
|u)p(u|k,z),

we can sample multiple parameter sets{β,η2,λh,λv,ν
2,u},

and generate multiple 3-D random fields conditioned on each
of the parameter sets.

3.3 Implementation

3.3.1 Organization of constant-rate injection test data

To demonstrate our approach, we used seven out of the four-
teen constant-rate injection tests at the site for the synthetic
study, and four for the real data analysis (injection at Well 2-
09, 2-18, 2-24, and 3-24). The locations of injection and ob-
servation wells are well balanced within the IFRC site. Fig-
ure 2 shows the configuration of the injection and observation
wells for each of the seven tests.

For each test, we calculated the zeroth-order moments at
multiple observation wells by integrating the pressure build-
up curves. Since the well field is located near the Columbia
River, the water table changes according to the river stage
fluctuation. Since the change was mostly linear within
20 min after the injection started, we removed the ambient
head contribution by linear interpolation. For quantifying the
measurement errors, we followed Nowak et al. (2006) and Li
et al. (2008), who determined the errors based on fluctuation
or noise in the pressure measurements. Since the noise in
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Fig. 3. Anchor locations in the domain for the constant-rate injec-
tion test inversion. The reference point of local coordinates is at
(594 164 m, 115 976 m) in the Hanford coordinates.

our case is contained within the range of the instrument res-
olution, we determined the standard deviation of measure-
ment error based on the resolution of the instrument, 0.003 ft
(0.09 cm) by integrating it over the injection duration.

3.3.2 Prior distribution for MAD inversion

For the prior distribution of the 2-D structural parametersθ ,
we used three independent uniform distributions bounded by
the minimum and maximum values, as are shown in Table 1.
The prior distributions of each parameter sufficiently cover
possible values from the historical data at the site (Meyer et
al., 2007) or literature values for similar geological forma-
tions (Rubin, 2003). The uniform distributions are consid-
ered to be less informative than Gaussian distributions, which
have been commonly used in the Bayesian geostatistical in-
version (Li et al., 2005). Three thousand sets ofθ are gener-
ated fromp(θ ) using a quasi Monte-Carlo sampling method
(Krommer and Ueberhuber, 1998).

As is shown in Fig. 3, we placed 44 anchors at all the well
locations inside the well plot and at sparse locations out-
side the well plot, following the discussion in Sect. 3.1.4.
For each set ofθ , we generated 12 sets of anchorsϑ from
p(ϑ |θ ), so that the number of prior parameter sets{θ ,ϑ} is
36 000. We gradually added more parameter sets until we
observed the posterior distribution converged – not changing
along with increasing numbers of sets.

3.3.3 Forward simulation in MAD

Figure 3 shows the 2-D computational domain used for the
forward simulations. For simulating the zeroth-order tem-
poral moments on multiple random fields, we followed the
approach by Firmani et al. (2006), since the mathematical
expression for the zeroth-order moments is the same as the
one for steady-state flow toward a well.
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Table 1. The lower and upper bounds of the prior distribution for the structural parameters of the 2-D transmissivity field.

Minimum Maximum Reference

Mean µ, m2 s−1 (lnT ) −4.82∗ 2.17∗ Meyer et al. (2007) (Inverse model estimates)
Variance,σ2 0.5 3.0 Rubin (2003), Table 2.1 and Table 2.2
Scale,φ, m 8 30 Rubin (2003), Table 2.1 and Table 2.2

∗ The upper bound and lower bounds ofK multiplied by the average aquifer thickness 7.62 m.
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Fig. 4. Reference field for the synthetic study. Line A–B is used for
the transect.

Firmani et al. (2006) determined the grid and domain sizes
according to the integral scale. Although the integral scale is
unknown in our framework, we have the minimum or max-
imum possible integral scale (φmin andφmax), which are the
upper and lower bounds of the uniform prior distribution. We
used these two values so that any possible integral scale can
satisfy the requirement for the domain and grid sizes.

The computational grid size is uniform equal to 0.2φmin in
bothx1 andx2 directions during the field generation. During
the flow simulations, the grid blocks near the injection well
are divided into non-uniform grid from 0.04φmin at the in-
jection well location to 0.2φmin at a distance of 0.8φmin, sat-
isfying the condition that the ratio between the neighboring
block size should not exceed 1.5 (Firmani et al., 2006). We
determined the domain size such that the observation wells
were 2φmax away from the boundaries to reduce the bound-
ary effect. During the flow simulation, we added another
buffer zone with widthφmax and uniformT equal toTG be-
tween the field and the boundaries for further reducing the
boundary effect. We intended to satisfy 3φmax between any
observation wells and the boundaries, based on the theory
developed by Rubin and Dagan (1988).

We used the SGSIM program from GSLIB (Deutsch and
Journel, 1998) to generate spatially correlated Gaussian ran-
dom fields conditioned on eachf set of{θ ,ϑ}. We then sim-
ulated zeroth-order moments on each field, using a finite-
element method with linear elements. We used 250 realiza-
tions of random fields and moments for each{θ ,ϑ} to es-
timate the likelihoodp(z|θ , ϑ). We gradually added more
realizations, and found that the likelihood values converged
with 250 realizations. The 9 000 000 forward simulations
took 60 000 computational hours in total. It was divided into
several batches, and used up to 9000 cores on the Franklin
supercomputer at the National Energy Research Scientific
Computing Center (Berkeley, USA), each core of which is
a 2.3 GHz single AMD Opteron processor.

3.3.4 3-D geostatistical model

After calculatingp(u|k,z) from the relativeK values and
lnT values at the EBF well locations, we generated a thou-
sand sets ofu from p(u|k,z). For each set ofu, we com-
puted a posterior distributionp(β,η2,λh,λv,ν

2
|u), based on

the uniform prior distribution ofλh, λv andν2 bounded by
the values shown in Table 2. We then integrate the distribu-
tion numerically to determinep(β,η2,λh,λv,ν

2
|k,z).

4 Results and discussion

We first tested the MAD and numerical setting in a synthetic
study for inverting the injection test data, and then we applied
it to the actual data at the Hanford site.

4.1 Synthetic study for 2-D transmissivity field

We generated a synthetic reference 2-D lnT field with a 2-
D structural parameter set{µ,σ 2,φ} = {−1.8,1.5,20}, shown
in Fig. 4. We obtained maximum likelihood estimates of the
true parameters as{−1.76,1.46,20.0}, with near-exhaustive
sampling (one out of every five points) (GeoR package by
Ribeiro and Diggle, 2001). We then calculated the zeroth-
order moments on the reference field and superposed a
zero-mean independent Gaussian measurement error, which
has the same variance as the actual data from the study site.

Our inversion process is based on the same sets of injection
and observation wells as the actual experiments conducted
at the IFRC site (Fig. 2). We also combined the different
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Table 2. The lower and upper bounds of the prior distribution for the horizontal scale, vertical scale and nugget variance of the 3-D hydraulic
conductivity field.

Minimum Maximum Reference/Justification

Horizontal scale,λh, m 8 50 Rubin (2003), Table 2.1 and Table 2.2
Vertical scale,λv , m 0.5 10 Saturated thickness<10 m
Nugget variance,ν2 10−3 0.25 Less than 50% of standard deviation

Fig. 5. Marginal posterior distributions of the structural parameters
(mean, variance and scale) in the synthetic study, with their corre-
sponding true values. The ones based on the different number of
tests are compared.

number of injection tests in the inversion: one injection test
(injection at Well 2-18), two tests (Well 2-09 and 2-24), three
tests (Well 2-09, 2-24, and 3-24), four tests (Well 2-09, 2-18,
2-24, and 3-24), five tests (Well 2-09, 2-11, 2-18, 2-24 and
3-24), six tests (Well 2-09, 2-11, 2-16, 2-18, 2-24 and 3–24)
and seven tests (Well 2-09, 2-11, 2-16, 2-18, 2-19, 2-24 and
3-24). They are compared to show the effect of additional
information from the multiple tests.

Figure 5 shows the marginal posterior distributions of the
2-D geostatistical structural parameters{µ,σ 2,φ} based on
the various number of tests, with their corresponding true
values. While the mean has a symmetric Gaussian-like dis-
tribution, the variance and scale has broad and skewed distri-
butions. The results are improved with increasing number of
tests up to three tests, i.e. the posterior distributions become
narrower and biases are reduced. The improvement by ad-

ditional tests is more significant for the variance and scale,
which suggests that the estimation of variance and scale re-
quires more observations. The improvement, however, is not
significant for more than three tests, and the distributions
based on four to seven tests are very close to each other,
which would suggest that the effect of increasing number of
tests could be saturated due to the measurement errors and
redundancy of information in the data. Although we may ex-
pect tighter distributions with more information, some of the
uncertainty cannot be eliminated due to measurement errors
and the limited number of observation wells. In addition,
the same observation wells were used repeatedly for several
tests. Yeh and Li (2000) and Zhu and Yeh (2005) also re-
ported that increasing the number of pumping tests did not
improve the estimation above a certain number (three to four
tests in their cases).

To examine the effect of anchors and evaluate the random
fields generated based on the posterior distributions, we gen-
erated 200 000 fields from the posterior distribution of pa-
rameters (5000 posterior sample parameter sets with 40 fields
per parameter set), and compared the ensemble with the true
field. Two cases are studied: one based on a single test (injec-
tion at Well 2-18) and the other based on three tests (injection
at Well 2-09, 2-24, 3-24).

Figure 6 shows the mean and 98% confidence interval of
the predicted lnT fields along the centerline of the well field
as shown in Fig. 4 (Line A–B). The centerline also corre-
sponds to the line passing through large variability, from high
near the top to low in the middle of the well plot. The fig-
ure also includes five realizations that depict the level of het-
erogeneity in the randomly-generated fields to be used for
stochastic simulations. The mean field and random fields
along the line all follows a general trend of the true field,
especially so with more tests assimilated. If there were no
anchors, the mean field would be a flat line at the global
mean, and the random fields would be distributed around the
flat line. Therefore the deviation from such a straight line
is attributed to anchors that capture local heterogeneity. The
uncertainty bounds are found to be tighter near the center,
where there are more observation wells and more anchors.
Increasing the number of tests not only reduces the uncer-
tainty, but also reduces the bias by moving the mean field
closer to the true field.
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Fig. 6. Comparison among the reference field, the mean field and
the 98% confidence interval of the generated fields, along the center
line of the IFRC well field (Line A–B in Fig. 4), for the inversion
based on(a) one test (injection at Well 2-18) and(b) three tests
(injection at Wells 2-09, 2-24 and 3-24). The gray lines are the
realizations of the fields.

4.2 IFRC data analysis

After we gained confidence from the synthetic study, we ap-
plied the same scheme to the data from the IFRC site. Since
the synthetic study indicated that four tests would be enough,
we used up to four tests (the same sets): one injection test
(injection at Well 2-18), two tests (injection at Well 2-09
and 2-24), three tests (injection at Well 2-09, 2-24, and 3-
24) and four tests (injection at Well 2-09, 2-18, 2-24, and
3-24). Since the true values are unknown in this case, we
validated the posterior distribution by comparing predictions
with the testing set data, i.e., the observations not included
in the inversion. It is a common procedure in statistics to
divide the dataset into a training set (i.e., data used in inver-
sion) and testing set (i.e., data used for testing or validating
the inversion result).

Figure 7 shows the marginal posterior distributions of the
three 2-D structural parameters for the 2-D lnT field at the
IFRC site. These three plots show a similar feature to the
synthetic study in Fig. 5 such as a Gaussian-like distribution
for the mean, broad and skewed distributions for the variance
and scale, and the effect of increasing the number of injection
tests in the inversion.
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Fig. 7. Marginal posterior distributions of the structural parameters
(mean, variance and scale) for the Hanford IFRC site data.

For the first validation of the 2-D lnT inversion, we gen-
erated 200 000 fields (5000 posterior sample parameter sets
with 40 fields per parameter set) based on one test (injection
at Well 2-09), two tests (injection at Well 2-09 and 3-24) and
three tests (injection at Well 2-09, 2-24 and 3-24). We then
predicted the zeroth-order temporal moments in the injection
test at Well 2-18, which was not the part of the estimation.
Figure 8 shows the marginal predictive distributions of the
observed moments at two observation wells, based on one,
two and three tests, compared with the actual data. The true
value is contained within the range of values defining the pre-
dictive distributions, and the combination of the three tests
improves the prediction by narrowing the distributions.

As another validation, we obtained the maximum a
posteriori (MAP) estimate of the geometric mean ofT ,
TG = exp(µ), in Fig. 7, which is 0.52 m2 s−1. We compared
this value withTG estimated from the Cooper-Jacob analysis
(Sánchez-Villa et al., 1999), in which we fitted the late-time
pressure build-up curves at multiple observation wells in the
injection test at Well 2-18. The 95% confidence bound ofTG
was 0.38–0.57 m2 s−1. As we expected, our estimate ofTG
corresponded to the estimates based on conventional analysis
for a large-scale injection test.

Figure 9 shows the marginal distribution for the 3-D geo-
statistical structural parameters conditioned on the EBF data
and injection test data. For the horizontal scale, vertical
scale, and nugget, the upper and lower bounds of thex-
axis correspond to the bounds of the prior distributions. We
can see that the marginal posterior distributions of the struc-
tural parameters are skewed except for the mean, which sug-
gests that the entire distribution is necessary to quantify the
parameter uncertainty.
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Fig. 8. Comparison between the zeroth-order moments observed at
Well 2-09 and 3-24 in the injection test at Well 2-18, and predictive
posterior distributions from the inversion, including the different
numbers of injection tests.

The horizontal scale has a particularly broad distribution,
which is not zero at the bounds. This is because available
data is insufficient for narrowing down the distribution (Dig-
gle and Ribeiro, 2002; Hou and Rubin, 2005). Inferring
the scale parameters requires different lags (i.e. distances)
among the data points. Although we have many different
lags for the vertical scale along the boreholes, spacing be-
tween the wells restricts variation in horizontal lags for the
horizontal scale. It suggests the importance of setting rea-
sonable bounds for the prior distribution based on the infor-
mation from geologically similar sites.

We also compared the distributions based on the different
number of tests included in the injection test inversion. As
it turned out, increasing the number of injection tests did not
reduce the parameter uncertainty in the 3-D structural pa-
rameters as significantly as in the 2-D parameters. This is
because the uncertainty and sparseness of the EBF data ob-
scures additional information of the increasing number of in-
jection tests in the 3-D spatial inference. These findings are
consistent with Li et al. (2008), who also found that the 3-D
characterization of the aquifer was limited by the EBF data
density.

Figure 10 shows the 3-D mean field, based on
the 5000 parameter sets generated from the distribution
p(β,η2,λh,λv,ν

2,u|k,z). We can see the high-low-high lay-
ers in lnK along the centerline of the field, which is consis-
tent with the observations in the tracer tests later conducted
at the site (Rockhold et al., 2010; Zachara, 2010).

5 Summary

In this paper, we presented a Bayesian approach for charac-
terizing a 3-DK field by assimilating the EBF and constant-
rate injection tests. We employed a two-step approach – first
inverting the constant-rate injection test data for obtaining
the joint distribution of localT values at the EBF well loca-
tions, and then converting the EBF data to localK values for
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Fig. 9. Marginal posterior distributions of 3-D geostatistical struc-
tural parameters of lnK values at the Hanford IFRC site, based on
the different number of injection test.

the 3-D characterization. For the injection test inversion, we
used MAD, which is a newly developed Bayesian geostatisti-
cal inversion framework. We inverted zeroth-order moments
of pressure buildups at multiple observation wells, which can
eliminate uncertainty in a storage coefficient, as well as sig-
nificantly reduce computational cost.

In a synthetic study, we first showed that MAD could suc-
cessfully infer the geostatistical parameters and predict the
2-D lnT field. As we included more tests, we could further
reduce the uncertainty, and better capture the local hetero-
geneity. The improvement, however, was saturated at three
to four tests due to the measurement errors and redundancy
of information in the data, which is consistent with the pre-
vious studies (Yeh and Li, 2000; Zhu and Yeh, 2005).

By applying the method to the actual data, we obtained
the posterior distribution of geostatistical structural parame-
ters and the anchor values of the 2-D lnT field for the Han-
ford 300 Area IFRC site. We validated the result using the
predictive distribution of the zeroth-moments in the injec-
tion test that were not part of the inversion. In addition,
the MAP estimate of the mean lnT coincided with theTG
value obtained from the Cooper-Jacob analysis, which con-
firmed our method’s consistency with conventional pumping
test analysis.

We then combined the relativeK values from the EBF data
with the distribution of lnT at EBF wells so that we obtain
the distribution of the depth-discrete absoluteK in the 3-D
domain. The uncertainty inT (2-D) is consistently carried
on into the lnK values (3-D) as a probability distribution. We
thus constructed a 3-D geostatistical model for the lnK field
using the model-based Bayesian geostatistical approach.

We demonstrated the advantages of MAD such that MAD
was directly connected to the stochastic forward simulations,
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Fig. 10. 3-D mean lnK field in the saturated portion of the Han-
ford formation. The black dots and lines represent the well loca-
tions. The reference point of local coordinates is at (594 164 m,
115 976 m) in the Hanford coordinates.

and it directly inferred the joint distribution of the param-
eters to be used as an input of the simulations. Compared
to the other inverse modeling methods that yield only best-
estimates and confidence bounds, MAD fully quantifies the
parametric uncertainty as statistical distributions, which is
necessary to capture skewed distributions found for the vari-
ance and scale parameters.

For the field application, we showed that combining EBF
and injection tests is promising for characterizing a hetero-
geneous lnK field in a coarse-grained and highly permeable
aquifer, where the other conventional techniques fail to pro-
vide information of local heterogeneity. We found that the
3-D characterization is restricted by the EBF measurement
density, in the sense that increasing the amount of depth-
averaged information from the injection tests did not con-
tribute significantly to narrowing down the posterior distri-
bution of the 3-D geostatistical parameters.

Appendix A

Temporal moments

According to Li et al. (2005) and Zhu and Yeh (2006), the
k-th-order temporal momentmk(x) for a pressure build-up
curves(x,t) is defined by

mk(x) =

∫
∞

0
tks (x,t)dt. (A1)

In this study, we use only the zero-order momentm0(x) for
the inversion to characterize theT field, which can exclude
uncertainty in the storage coefficient and avoid an alias effect
of the storage-coefficient uncertainty to theT field. Under

the constant injection condition, we obtainm0(x) from the
equation:

∇ ·(T ∇m0)+τQδ
(
x −xp

)
= 0, (A2)

with the boundary condition at the Drichlet boundary0dri as,

m0 = 0, at 0Dri, (A3)

whereT (x) is the depth-integratedT value,τ is the injection
duration,Q is the constant injection rate andxp is the injec-
tion well location. The Drichlet boundary condition was im-
posed at the nearest observation well location, where them0
value is known, in the same manner that Firmani et al. (2006)
imposed a boundary condition at the injection well location.
Note that Eq. (A2) is the same as the one for determining hy-
draulic head under steady-state flow with a constant injection
rateτQ.

Appendix B

Bayesian model-based geostatistics for 3-D
structural parameters

According to Diggle and Ribeiro (Chapter 6, 2006), we cal-
culate the posterior distributions of the 3-D geostatistical
structural parameters conditioned onu(x). First, the scales
λh andλv and nugget varianceν2 depend only onu as

p
(
λh,λv,ν

2
|u

)
∝ π

(
λh,λv,ν

2
)
|V

β̂
|

1
2 |(

R(3-D)
+ν2I

)
|
−

1
2

(
S2

)−
N−1

2
, (B1)

where each term is defined as the follows:

V
β̂

=

[
1T

(
R(3-D)

+ν2I
)−1

1
]−1

,

β̂ = V
β̂
1T

(
R(3-D)

+ν2I
)−1

u,

S2
=

uT
(
R(3-D)

+ν2I
)−1

u− β̂T V −1
β̂

β̂

N −1
, (B2)

whereN is the dimension ofu, R(3-D)
= R(3-D)(x,x) is the

auto-correlation matrix foru, 1 is theN -vector with all the
elements equal to one, andI is the identity matrix. The vari-
anceη2 follows an inverse-scaledχ2 distributionχ2

Scl with
(N−1) degrees of freedom and a scale parameter equal to
S2:

p
(
η2

|λh,λv,ν
2,u

)
∼ χ2

Scl

(
N −1,S2

)
. (B3)

The mean follows a normal distribution with meanβ̂ and
varianceη2V

β̂
:

p
(
β|η2,λh,λv,ν

2,u
)

∼ N
(
β̂,η2V

β̂

)
. (B4)

We multiply Eqs. (B1), (B3), (B4), and the prior distribution
to determinep(β,η2,λh,λv,ν

2
|u) in Eq. (6).
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