Modeling Land Application of Food-Processing Wastewater in the Central Valley, CA

G. Miller¹, Y. Rubin¹, P. Benito¹, J. McLaughlin¹, Z. Hou², S. Hermanowicz¹, K.U. Mayer³

¹Civil and Environmental Engineering, University of California-Berkeley ²Geology, State University of New York-Buffalo ³Earth and Ocean Sciences, University of British Columbia

http://hilmarsep.com

Food Processing Wastewater in the Central Valley

- Over 600 facilities
- >\$62 billion in revenue
- Water use: 80 million m³ yr⁻¹
- High in salinity (FDS), organic carbon, and nitrogen
- Typical disposal method: land application for irrigation
- Discharged to alluvial fan and floodplain deposits

An Environmental Threat?

Metric	Municipal Waste	Tomato Canner		
BOD (mg-O ₂ L ⁻¹)	450	820		
FDS (mg L ⁻¹)	720	1680		
рН	6.7	5.4		
Nitrogen (mg-N L ⁻¹)	25	51		
Flow Rate (gal d ⁻¹)	2.6 x 10 ⁷	1.5 x 10 ⁶		
Pathogens present?	Virtually certain	Very unlikely		
Sources: food, disinfectants, processing chemicals				

Groundwater Degradation?

Regulating Food Processing Waste

- Study itself product of legal settlement
- Protect California's environment, economy, or both?
 - Regulators vs. industry?
 - Water resources vs. economy? (Porter-Cologne Act)
- All agree on need for regulations based on science
 - What is the natural attenuation capacity of the soil?
 - Is there a safe agronomic rate for salinity application?
 - What discharge management processes are effective?
 - How do the economic costs of land application compare to those of the alternatives?

Modeling Challenges

- Very Large Scale
 - 600+ producers with a diversity of wastewater characteristics and application site hydrogeology
- Attenuation Processes
 - Condition specific rates, strong potential for interaction
- Data Deficiency
 - Few measurements in vadose zone, none long-term
- Disparate systems
 - Required complexity different for vadose and saturated zones

Modeling Strategy

Address diversity of sites and waste streams

Run groundwater model to determine extent of degradation

Develop and implement model of waste attenuation

Use "transfer functions" to describe UZ/SZ connection

Land Application Conceptual Model

Vadose Zone Model Scenarios

- 12 scenarios 4 industries, 3 cases
- Best/worst case for nitrogen, saturation dependent
- Simulations implemented in MIN3P numerical code

Case	Soil Saturation	Waste water composition	Best/worst?
1	High for anaerobic (0.9 – 0.99)	High: NH ₄ +, CH ₂ O, FDS Low: NO ₃	Worst for NH ₄ +
2	Low for aerobic (0.4 – 0.5)	High: NO ₃ +NH ₄ +, FDS Low: CH ₂ O	Worst for NO ₃ -
3	Moderate for mixed (0.8 – 0.9)	Low: CH_2O , FDS, NH_4^+ , and NO_3 low relative to CH_2O	Best for both

Applied Waste Concentrations

Winery Waste Water Footprint

Waste Components

Calcium (Ca²⁺) Magnesium (Mg²⁺) Potassium (K⁺) Sodium (Na⁺) Ammonium (NH_4^+) Manganese (Mn²⁺) Zinc (Zn²⁺) Copper (Cu²⁺) Iron (Fe²⁺) Carbonate (CO_3^{2-}) Phosphate (PO_4^{3-}) Sulfate (SO_4^{2-}) Chloride (Cl⁻) Nitrate (NO_3^{-}) pН Labile organic carbon(CH_2O)

Example Transfer Functions

Comparison to Groundwater Data

Degradation of Groundwater

Conclusions

- Attenuation condition dependent, not necessarily sustainable
- Attenuation processes contributing most were dependent on the contaminant
- "Safe agronomic rate" questionable for FDS
- Lateral migration in groundwater limited
- Need for increased vadose zone monitoring and characterization
- Modeling can provide tool for policy makers, but does not offer definitive solution