
bSLOPE:
A Limit Equilibrium Slope Stability Analysis Code for iOS

by
Oliver C. Rickard

and
Nicholas Sitar

Geotechnical Engineering Report No. UCB/GT/12-01

May 2012
Updated August 2012

bSLOPE:

A Limit Equilibrium Slope Stability Analysis Code for iOS

by

Oliver C. Rickard

and

Nicholas Sitar

Geotechnical Engineering Report No. UCB/GT/12-01

May 2012

Updated August 2012

Department of Civil and Environmental Engineering

UC Berkeley

Berkeley, CA, 94720

Table of Contents
1.1	 INTRODUCTION	 ...	 1	

1.2	 LIMIT	 EQUILIBRIUM	 METHOD	 ..	 1	
1.2.1	 SPENCER	 SLICE	 FORMULATION	 ..	 3	
1.2.2	 CRITICALITY	 ...	 4	
1.2.3	 CIRCULAR	 VS.	 NON-‐CIRCULAR	 ...	 4	

1.3	 SEARCH	 FOR	 CRITICAL	 FAILURE	 SURFACE	 ...	 6	
1.3.1	 METHODOLOGY	 ...	 6	
1.3.2	 CIRCULAR	 SEARCH	 ..	 6	
1.3.3	 NON-‐CIRCULAR	 SEARCH	 ..	 6	
Dynamic	 Programming	 ...	 6	
Conjugate-‐Gradient	 ...	 7	
Simplex	 ...	 7	
Monte	 Carlo	 Technique	 ...	 7	
Composite	 Differential	 Evolution	 (CoDE)	 ..	 7	

2.1	 BSLOPE	 ALGORITHM	 ...	 8	
2.1.1	 OVERVIEW	 OF	 COMPUTATION	 ENGINE	 ...	 8	
Objective-‐C	 ..	 8	
MATLAB	 ...	 8	
Functional	 Approach	 ..	 9	
SMUGMath	 ..	 9	
Multithreading	 ...	 10	

2.2	 IMPLEMENTATION	 ..	 12	
2.2.1	 PROBLEM	 SETUP	 ..	 12	
2.2.2	 FS	 EVALUATION	 ...	 12	
2.2.3	 SMOOTH	 SLIP	 GENERATION	 ...	 14	
2.2.4	 CODE	 IMPLEMENTATION	 ...	 15	

2.3	 EXAMPLE	 PROBLEMS	 ..	 17	
2.3.1	 ZOLFAGHARI	 ET	 AL.	 (2005)	 INCLINED	 WEAK	 LAYER	 ..	 17	
2.3.2	 ZOLFAGHARI	 ET	 AL.	 (2005)	 HORIZONTAL	 WEAK	 LAYER	 +	 GROUNDWATER	 ...	 19	
2.3.3	 DUNCAN	 AND	 WRIGHT	 (2005)	 -‐	 JAMES	 BAY	 DIKE	 ..	 21	

3	 CONCLUSIONS	 ...	 22	

4	 REFERENCES	 ..	 23	

APPENDIX	 A:	 FUNCTION	 DOCUMENTATION	 ..	 26	
	

Acknowledgments

The iOS implementation of the Limit Equilibrium algorithm used herein is based on a MATLAB
code written by Mr. Mohammed Tabarroki of the University of Science of Malaysia. His advice
and generosity in sharing his insights into the computational aspects of the implementation are
gratefully acknowledged.

Professor Stephen Wright pointed out an error in the May 2012 report, and we are grateful to
him for his assistance. The James Bay test case has been updated with the results from our
corrected, released version of the application.

	
	
	

1.1 Introduction
The purpose of this project was to demonstrate the capabilities of mobile devices for advanced
computation and analysis. bSLOPE, is a slope stability code adapted for iOS and for iPad using
a new computational engine based on the work of Tabarroki (Tabarroki 2012), and Wang
(2011).	 To this end the fundamentals of Limit Equilibrium slope stability analysis are reviewed
first and then the computational algorithms are introduced as they are implemented in bSLOPE.
This report has two objectives: (1) To acquaint the user with the process that is used in bSLOPE
to analyze a particular slope in order to understand the internal structure of the algorithms and
the limitations of the code; and (2) To give other researchers the information necessary to
improve and extend bSLOPE’s open source computation engine.

bSLOPE represents a new approach to slope stability analysis and engineering applications in
general. Traditional slope stability packages contain proprietary, closed-source computation
engines, and have limited user interfaces. These user interfaces often become the bottleneck in
processing of slopes. bSLOPE uses innovative touch interfaces and drafting systems that take
advantage of new technology in graphical interfaces. These interfaces allow the user of
bSLOPE to rapidly formulate cross-sections and quickly perform the necessary analyses in the
field. bSLOPE focuses on the most common tasks that an engineer would need to do in order
to verify a slope’s safety. Its aim is to be simple and easy to use, while still using the most
recent advances in numerical limit equilibrium algorithms. bSLOPE is not intended to be a
replacement for many commercially accepted codes which have more analysis options. It is
intended to complement these applications with a field component.

1.2 Limit Equilibrium Method
The limit equilibrium method of analysis for static slopes is still the most widely used tool to
analyze the stability of a given soil slope. It considers a soil continuum of different strata, and
given a particular failure surface in the form of lines or arcs, a “Factor of Safety” is found through
the application of force and/or moment equilibrium. The factor of safety is defined as the ratio of
the resisting force or moment to the driving force or moment. So if a particular failure surface
has a Factor of Safety (FS) of 1, then it is at the “limit” of equilibrium assumptions. A Factor of
Safety less than 1 means that the driving forces are greater than the resisting forces and the
slope will fail either in rotation, translation, or a combination thereof.

In order to take an arbitrary geometry and automate the procedure of calculating a FS for a
particular failure surface geometry, it is necessary to divide the sliding mass into sections.
There are a variety of methods for performing this task; however, the most common method is
to divide the mass into vertical slices. This is called the method of slices. The equilibrium

1

conditions are applied to each slice and contributions to either driving or resisting force or
moment are computed. The sum of all driving and resisting moments and forces are then used
to compute the overall Factor of Safety for the discretized sliding mass.

Traditionally, the failure surfaces were defined as circular. This can be an accurate assumption
in many homogenous soils; however, it is not true in most real world situations. Non-circular
failure surfaces are much more likely in heterogeneous soils or where geological units form a
complex geometry.

There are several methods for computation of FS from a particular sliced sliding mass. Table 1,
below, summarizes the methods most commonly used in practice and gives an overview of their
use cases and assumptions.

Method	 Limitations,	 Assumptions,	 and	 Equilibrium	 Conditions	 Satisfied	
Ordinary	 method	 of	 slices	

(Fellenius	 1927)	
Factors	 of	 safety	 low	 –	 very	 inaccurate	 for	 flat	 slopes	 with	 high	 pore	 pressures;	 only	 for	 circular	

slip	 surfaces;	 assumes	 that	 normal	 force	 on	 the	 base	 of	 each	 slice	 is	 W	 cos	 α;	 one	 equation	
(moment	 equilibrium	 of	 entire	 mass),	 one	 unknown	 (factor	 of	 safety)	

Bishop’s	 modified	
method	 (Bishop	 1955)	

Accurate	 method;	 only	 for	 circular	 slip	 surfaces;	 satisfies	 vertical	 equilibrium	 and	 overall	 moment	
equilibrium;	 assumes	 side	 forces	 on	 slices	 are	 horizontal;	 N+1	 equations	 and	 unknowns	

Force	 equilibrium	
methods	

Satisfy	 force	 equilibrium;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assume	 side	 force	 inclinations,	
which	 may	 be	 the	 same	 for	 all	 slices	 or	 may	 vary	 from	 slice	 to	 slice;	 small	 side	 force	
inclinations	 result	 in	 values	 of	 F	 less	 than	 calculated	 using	 methods	 that	 satisfy	 all	 conditions	
of	 equilibrium;	 large	 inclinations	 result	 in	 values	 of	 F	 higher	 than	 calculated	 using	 methods	
that	 satisfy	 all	 conditions	 of	 equilibrium;	 2N	 equations	 and	 unknowns	

Janbu’s	 simplified	
method	 (Janbu	 1968)	

Force	 equilibrium	 method;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 side	 forces	 are	
horizontal	 (same	 for	 all	 slices);	 factors	 of	 safety	 are	 usually	 considerably	 lower	 than	 calculated	
using	 methods	 that	 satisfy	 all	 conditions	 of	 equilibrium;	 2N	 equations	 and	 unknowns	

Modified	 Swedish	
method	 (US	 Army	
Corps	 of	 Engineers	
1970)	

Force	 Equilibrium	 method,	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 side	 force	 inclinations	
are	 equal	 to	 the	 inclination	 of	 the	 slope	 (same	 for	 all	 slices);	 factors	 of	 safety	 are	 often	
considerably	 higher	 than	 calculated	 using	 methods	 that	 satisfy	 all	 conditions	 of	 equilibrium;	
2N	 equations	 and	 unknowns	

Lowe	 and	 Karafiath’s	
method	 (Lowe	 and	
Karafiath	 1960)	

Generally	 most	 accurate	 of	 the	 force	 equilibrium	 methods;	 applicable	 to	 any	 shape	 of	 slip	 surface;	
assumes	 side	 force	 inclinations	 are	 average	 of	 slope	 surface	 and	 slip	 surface	 (varying	 from	 slice	
to	 slice);	 satisfies	 vertical	 and	 horizontal	 force	 equilibrium;	 2N	 equations	 and	 unknowns	

Janbu’s	 generalized	
procedure	 of	 slices	
(Janbu	 1968)	

Satisfies	 all	 conditions	 of	 equilibrium;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 heights	 of	
side	 forces	 above	 base	 of	 slice	 (varying	 from	 slice	 to	 slice);	 more	 frequent	 numerical	
convergence	 problems	 than	 some	 other	 methods;	 accurate	 method;	 3N	 equations	 and	
unknowns	

Spencer’s	 Method	
(Spencer	 1967)	

Satisfies	 all	 conditions	 of	 equilibrium;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 that	
inclinations	 of	 side	 forces	 are	 the	 same	 for	 every	 slice;	 side	 force	 inclination	 is	 calculated	 in	 the	
process	 of	 solution	 so	 that	 all	 conditions	 of	 equilibrium	 are	 satisfied;	 accurate	 method;	 3N	
equations	 and	 unknowns	

Morgensertn	 and	 Price’s	
method	 (Morgenstern	
and	 Price	 1965)	

Satisfies	 all	 conditions	 of	 equilibrium;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 that	
inclinations	 of	 side	 forces	 follow	 prescribed	 pattern,	 called	 f(x);	 side	 force	 inclinations	 can	 be	
the	 same	 or	 can	 vary	 from	 slice	 to	 slice;	 side	 force	 inclinations	 are	 calculated	 in	 the	 process	 of	
solution	 so	 that	 all	 conditions	 of	 equilibrium	 are	 satisfied;	 accurate	 method;	 3N	 equations	 and	
unknowns	

Sarma’s	 method	 (Sarma	
1973)	

Satisfies	 all	 conditions	 of	 equilibrium;	 applicable	 to	 any	 shape	 of	 slip	 surface;	 assumes	 that	
magnitudes	 of	 vertical	 side	 forces	 follow	 prescribed	 patterns;	 calculates	 horizontal	
acceleration	 for	 barely	 stable	 equilibrium;	 by	 prefactoring	 strengths	 and	 iterating	 to	 find	 the	
value	 of	 the	 prefactor	 that	 results	 in	 zero	 horizontal	 acceleration	 for	 barely	 stable	 equilibrium,	
the	 value	 of	 the	 conventional	 factor	 of	 safety	 can	 be	 determined;	 3N	 equations,	 3N	 unknowns.	

Table 1: List of FS evaluation methods, after Duncan (1996)

2

	
Most methods of computing the FS for a failure surface can be calculated through a common
formulation published by Fredlund and Krahn (1977) called the General Limit Equilibrium
method (GLE). The GLE encompasses the Simplified Bishop, Spencer’s, Janbu’s simplified,
Janbu’s rigorous, and the Morgenstern-Price methods. This approach is used in bSLOPE as
the basis for its FS calculations. This allows bSLOPE to rapidly compute the FS value for many
different methods using essentially the same algorithm.

1.2.1 Spencer Slice Formulation
In order to understand how the algorithm works, we must first understand how the FS
computation is executed within the algorithm.

Fig. 1. Forces acting for the method of slices applied to a composite sliding surface. After Fredlund and Krahn (1977)

The algorithm specifies the variables associated with each slice using the following notation.
bSLOPE parameter names follow in blue according to Tabarroki’s (Tabarroki 2012) original
naming scheme.

𝑊 = Total weight of the slice of width b and height h. (sliceWeight)
𝑃 = Total normal force on the base of the slice over a length l. (sliceNm and sliceNf for

moment and force equilibrium, respectively)
𝑆! = Shear force mobilized on the base of the slice. It is a percentage of the shear strength

as defined by the Mohr-Coulomb equation. That is, 𝑆! = 𝑙 {𝑐! + !
!
− 𝑢 tan𝜙!}/𝐹𝑆

where 𝑐! = effective cohesion parameter, 𝜙! = effective angle of internal friction, 𝐹𝑆 =
 factor of safety, and 𝑢 = pore-water pressure.

𝑅 = Radius or the moment arm associated with the mobilized shear force 𝑆!. (sliceR)
𝑓 = Perpendicular offset of the normal force from the center of rotation. (slicef)

3

𝑥 = Horizontal distance from the slice to the center of rotation. (slicex)
𝛽 = Base length of each slice. (sliceLength)
𝛼 = Angle between the tangent to the center of the base of each slice and the horizontal.

(sliceAlpha)
𝐸 = Horizontal interslice forces. (E)
𝑋 = Vertical interslice shear forces. Subscripts L and R define the left and right sides of

the slice, respectively. (sliceXr_Xl)
𝑐! = Effective cohesion. (sliceCohesion)
𝜙! = Effective angle of internal friction. (sliceFrictionAngle)
𝑢 = Pore-water pressure. (sliceU)
𝐹𝑆 = Factor of Safety. 𝐹𝑆! is for moment equilibrium. 𝐹𝑆! is for force equilibrium.

By writing moment and force equilibrium for Fig. 1, FS with respect to moment and force
equilibrium is as follows:

𝐹𝑆! =
∑ 𝑐!𝛽𝑅 + 𝑁 − 𝑢𝛽 𝑅 tan𝜙!

𝑊𝑥 − ∑𝑁𝑓

𝐹𝑆! =
∑(𝑐!𝛽 cos𝛼 + 𝑁 − 𝑢𝛽 tan𝜙! cos𝛼)

∑(𝑁 sin 𝛼)

where N at the base of each slice is calculated from:

𝑁 =
𝑊 − 𝑋! − 𝑋! − 𝑐

!𝛽 sin 𝛼 + 𝑢𝛽 sin 𝛼 tan𝜙!
𝐹𝑆

cos𝛼 + sin 𝛼 tan𝜙
!

𝐹𝑆

These equations are quite powerful because they encompass most of the different slope
stability methods in one unifying set of relationships. Typically, this approach is used in
numerical codes to determine the FS for a given failure surface.

1.2.2 Criticality
In a given slope, it is necessary to determine which subset of the infinitely possible failure
surfaces is “critical”. Critical failure surfaces are those that have low FS (generally less than or
equal to 1), and are large in size or in a sensitive location.

 1.2.3 Circular vs. Non-Circular
Circular failure surfaces are a subset of what are called “non-circular” failure surfaces in slope
stability analyses. Many of the early algorithms developed for obtaining a FS value assumed
that critical failure surfaces were roughly circular in shape. This is a fairly good assumption for a
very small subset of real world problems. Circular searches should be used as a starting point
for any real-world problem. They can be done rapidly with high levels of confidence in the
results. Non-circular searches are far more complex and are prone to getting caught in local

4

minima. Therefore, non-circular searches should be attempted very carefully. The geometry of
the problem may prevent convergence. Engineering judgment is required in selecting entry or
exit regions that will guide the slip surface to areas that are believed to be most susceptible to
failure.

5

1.3 Search for Critical Failure Surface

1.3.1 Methodology
In general, the search for the critical failure surface in a given slope is a problem of
minimization. In slope stability analysis, we are attempting to find the failure surface with the
minimum FS that is also meaningful in the real-world context. We do not want the search to get
caught on infinitesimally small failures, or generate kinematically inadmissible slip surfaces.

The objective function in this case is the GLE, the inputs are the X and Y coordinates of the slip
surfaces, and the output is the FS. By intelligently analyzing the output of the objective function
after each iteration, it is possible to modify the inputs (in this case, the slip surface) to attempt to
attain a lower-FS failure surface.

1.3.2 Circular Search
If the failure surface is limited to circular geometry then the optimization problem becomes very
simple. We must only consider center, radii, and the boundaries of the slope. This process has
been implemented in many codes as a “grid-and-radius” search in which the user specifies a
grid of centers and a range of radii to test. The FS values from the permutations of these two
parameters are computed, and the lowest value of FS is assumed to be from the critical surface.
A “heat map” of FS can then be generated. bSLOPE implements a very simple evolutionary
algorithm that varies three parameters to locate the minimum, entry and exit location, and the
radius of the circle.

1.3.3 Non-circular Search
If failure surfaces are not constrained to be circular, then the search for criticality becomes much
more complex. Traditionally, engineers would have to use their experience to define several
predicted non-circular failure modes based on the geology of the slope. These would be input
into the computer application, which would then calculate the FS for these special cases. This
limited search requires a great deal of work and a trial-and-error approach, which can easily
lead to problems if important failure surfaces are not considered.

The task of the non-circular search algorithm therefore is to find the critical, kinematically
admissible failure surface within a user-defined region. There are many approaches to this
problem. The first algorithms developed were deterministic in nature however they have
become highly complex to deal with the many different types of failures and situations. Other
search algorithms have been developed based on advanced evolutionary or statistical methods
that automatically optimize to the correct solution. These methods have the benefit of being
easy to understand in theory, and if managed properly, can match deterministic approaches to
the problem in both speed and accuracy.

6

Dynamic Programming
Bellman (1957) originally created a mathematical minimization technique called dynamic
programming. The algorithm was first applied to slope stability by Baker in 1980. The method
is very complex compared to many of the other optimization methods, and requires many more
parameters to be specified for the soil strata, such as Poisson’s ratio and elastic modulus. This
introduces additional uncertainty in the results, and this method has not been used widely since
its introduction.

Conjugate-Gradient
Arai and Tagyo (1985) used the conjugate gradient method, which is probably the most
prominent method of solving sparse systems of linear equations. It is often used in finite
element codes, and works well here, though more efficient algorithms have been proposed.

Simplex
A simplex is a geometrical figure in a N-dimensional space consisting of N+1 vertices and all
their interconnecting line segments (Bardet and Kapuskar 1989). In the case of the N-
dimensional slip surface with N+1 vertices, the simplex is used along with reflection, reflection
plus expansion, local contraction, and global contraction to generate successively lower FS
simplex geometries.

Monte Carlo Technique
Monte Carlo minimization techniques operate through random search for a function with several
variables. The first implementations of this technique in the slope stability context were
inefficient and required a tremendous number of iterations before the critical failure surface
could be found. To address this constraint, Greco (1996) presented the first “random walk”
Monte Carlo method. Through intelligent generation of kinematically admissible slip surfaces for
each iteration of the algorithm, Greco’s algorithm is comparable in speed to many deterministic
algorithms.

Composite Differential Evolution (CoDE)
This method was proposed as a general optimization algorithm by Wang (2011). It is a highly
efficient variant of the Differential Evolution process whereby an initial population is modified
through mutation, crossover, and selection to produce succeeding generations closer to the
global optimum. This general optimization algorithm was competitive with other general
methods (Wang 2011). Tabarroki (Tabarroki 2012) used MATLAB to implement a version of this
optimization technique for the X and Y coordinates of the non-circular slip surface and was able
to create the high-performance solution that is implemented in bSLOPE.

7

2.1 bSLOPE Algorithm

2.1.1 Overview of Computation Engine
The computation engine for bSLOPE was ported from an implementation of the Composite
Differential Evolution algorithm originally written by Tabarroki (Tabarroki 2012). The majority of
the work in the creation of bSLOPE was in translating and optimizing this MATLAB code to the
high-level native programming language Objective-C. Through extensive memory analysis and
refactoring many of the individual functions to utilize modern multi-cored discrete graphics and
CPUs, bSLOPE has been able to attain a 5-10x increase in speed over the MATLAB
implementation on the same hardware.

A major problem for the industry has been the closed-source nature of the existing computation
platforms. Codes like SLOPE/W (Geo-Slope 2001) use methods of analysis that are well-
established and rigorously defined, yet they are closed-source and proprietary, which means
that their improvement and optimization for the entire industry depends on the authors of the
code only. Consequently, slope stability research routinely entails either “reinventing the wheel”
by writing a limit equilibrium code from scratch, or using an outdated core written in the 70’s.
bSLOPE’s open computational engine will be available for all researchers to use and extend
moving forward.

Objective-C
Objective-C is a relatively widely used language that has many advantages for high-speed
scientific computing on limited resources. It is a superset of the low-level C language, which
means that anything written in C will also run in Objective-C. Objective-C however also has
high-level Object-oriented systems in place which give it great flexibility in its memory
management.

Its primary advantage over other high-level languages such as Ruby or Java is its memory
management and speed. Objective-C is a compiled language, which means that the resulting
compiled binary package runs directly on the processor of the system without an interpreter or
virtual machine layer between the program and the hardware. This allows it to use intelligent
memory allocations and modifiers within objective wrappers without the heavy overhead of
automatic “garbage” disposal in Ruby or Java.

C++ is another logical choice for bSLOPE; however, its unintuitive syntax would be challenging
for many researchers to use, especially if they are used to MATLAB. Objective-C uses similar
syntax to many other high-level programming languages such as Ruby or Java, and contains
many of the niceties of recent advancements in computer science.

MATLAB
MATLAB is an interpreted language with dynamic, inferenced types. It is a high-level language
with nice syntax for performing matrix operations, and has many high-performance matrix math
libraries built-in. However, when building a large custom code, it has limitations. The interpreter

8

is quite good at optimizing matrix computations, but can never be as fast as a compiled code
due to the large overhead associated with the interpretation layer and garbage collector. The
interpretation layer of MATLAB also has problems with I/O operations to memory buffers where
its variables are stored. These I/O operations often take much more time than the actual
computations do. C allows the user to pass variables as pointers to locations in memory and
does not necessitate the duplication of that memory to work on a particular variable.

MATLAB also uses high-precision computing for many of its core libraries, which makes
computations much slower than single floating-point precision calculations. In rewriting the
code, C float (single precision) primitives were used which are more than accurate enough for
slope stability calculations. C floats retain accuracy out to about the 6th decimal place, which is
sufficient for our purposes.

The primary challenge in translating the code from MATLAB was replicating the functionality of
many of MATLAB’s built-in vector and matrix math functions. Custom implementations for these
functions were written in Obj-C.

Functional Approach
There are many application structure paradigms that can be implemented to make a body of
code more easily understandable and maintainable. The two primary approaches currently
popular are Object Oriented applications and functional applications. Of course, most real-world
applications are a mix of the two, they generally fall somewhere on the spectrum closer to one
side or the other. bSLOPE’s computation engine was built with a functional approach. This
means that the stages of computation are broken up into functional components and these
components have strict rules for input and output. Generally, functions with pointer arguments
will not modify the memory of parent functions and they will allocate and free their own
workspaces in memory.

This has many benefits from a research perspective. Each individual function can be replaced
without destroying the functionality of the entire application, and refactoring becomes much
simpler. Performance enhancements from minute changes in particular functions can be
measured and calibrated simply. Of course, there are many object-oriented parts of bSLOPE
as well, starting with its math library which uses objects to represent abstract data types.
Objective-C has a great facility for easing the use of either application paradigm.

SMUGMath
The SMUGMath library was used as a base and heavily extended to mimic these functionalities
in Objective-C. At the basis of this library is the RealVector class. This class acts as an
Objective-C wrapper for a C float array. They allow C float arrays to be created and destroyed
through retain counting. RealVectors use the virtual Digital Signals Processing library from
Apple (vDSP) to perform in-place mathematical transformations on floats. This reduces
memory duplication and allows bSLOPE to use the multicored discrete graphics chips in Apple’s
devices.

9

For matrix operations, bSLOPE uses the RealMatrix class to represent the matrix data. A
RealMatrix is a wrapper for a RealVector with a specific mapping from elements in the 2D matrix
to specific elements in the vector. Processor intensive matrix operations like sorting and
searching are done with the vDSP library, which has highly optimized implementations.

Multithreading
MATLAB has some great multithreading tools that make it incredibly simple to implement a
parallel algorithm for multi-core processors. Tabarroki (Tabarroki 2012) used the “parfor”
function to parallelize FS evaluations for each stage of the evolutionary algorithm. There is no
simple way to duplicate this functionality in Objective-C. The performance gains associated with
splitting individual threads is often elusive if not done in the proper way. The overhead
associated with creating and running a new thread is not small. Also, deciding the optimal
number and execution order of threads to ensure that resources are not wasted and
performance is negatively impacted is difficult.

Objective C as implemented in iOS provides a multithreading library that is not quite as simple
as the “parfor” command in MATLAB. It is called Grand Central Dispatch, and optimizes the
execution order and number of concurrent processes for the current memory and processor
demands. It creates and manages C threads, and allows applications to queue code in the form
of Objective-C “blocks”. Blocks are compiled pieces of code that are similar to standard C
functions, but can be passed as part of other functions’ variable scope at runtime.

Grand Central Dispatch manages queues of blocks that are executed on the correct number of
threads for the current runtime environment to assure the fastest execution. bSLOPE mimics
the “parfor” functionality by queuing blocks that evaluate each individual FS evaluation. These
blocks then queue completion blocks on the main thread that insert their results into a
synchronous data source held in a singleton data object. Once all FS evaluation blocks have
been processed, the last item in the queue begins the next stage of post-processing these FS
and trial vector selection.

Thread safety is one of the biggest challenges faced by creators of multithreaded code. The
functional approach to bSLOPE makes this issue relatively simple to deal with. Each function is
passed its object parameters as pointers to locations in memory where the objects are located
and all primitives are passed as values. Functions are not allowed to modify the objects passed
in and are responsible for allocating and freeing the memory required to perform their
operations. The only operation that is not thread-safe by default is the access to the passed in
objects. This is solved by placing @synchronized blocks around the accessors, which requires
successive requests to wait in a queue in order to read the memory.

Most of the mobile processors that bSLOPE is designed for are single-core ARM chips, and so
are not able to see any performance gains by implementing this code. In fact, this approach will
tremendously slow down the code because of the management overhead associated with the
creation and destruction of thread processes and memory spaces. The third-generation iPad
does have a dual core A5X chip, but in our testing the performance gains from multithreading

10

the code on this small processor were nonexistent. By default, bSLOPE’s computation engine
has this section of code disabled until quad-core CPUs are introduced for iPad.

Although multithreaded computation is disabled for the CPU, discrete graphics chips are used
for the vector computation when present in the device. In the third-generation iPad, a quad-core
discrete graphics chip is in place that performs matrix math at high speed through Apple’s vDSP
library. This allows dramatic increases in speed when compared to the same computations on
the CPU.

11

2.2 Implementation

2.2.1 Problem Setup
The algorithm’s initial inputs are the stratigraphic layers and their associated properties. Each
layer of soil is represented by a polygon, which is defined as a matrix of X and Y coordinates.
The polygon must be closed, which means that the first and last coordinate must be equal to
each other.

The global boundaries for the cross-section are identified by building an index of interior and
exterior lines that define soil regions. The internal lines (edgeLines) are within the cross-
section, and the exterior boundaries (nonEdgeLines) define the shape of the overall cross
section.

Fig. 2. edgeLines and nonEdgeLines

Material properties for each of the stratigraphic layers are stored in the “materials” matrix. The
matrix has a column for each of the materials present in the slope. The columns are specified
as specific weight, cohesion, friction angle, and a fourth term that reserves space for future
additions to the code.

2.2.2 FS Evaluation
The implementation of FS evaluation in bSLOPE uses the GLE to compute FS value. What
follows is a pseudocode approximation of what the MATLAB and Objective-C computation
engines do. These methods have problems in certain situations with convergence. To ensure
that no infinite loops are created, a maximum iteration number is specified, and if any of these
methods exceed that iteration cap, then the slip surface is assumed to be kinematically
inadmissible or otherwise problematic. These slip surfaces are assigned a FS value of 99999,
and the CoDE engine automatically selects against them.

Inputs:	 gammaWater	 =	 unit	 weight	 of	 water	 (float);	

slipPoints	 =	 matrix	 of	 (x,y)	 rows	 defining	 vertices	 of	 slip	 surface	 (RealMatrix);	
axisPoint	 =	 axis	 for	 non-‐circular	 surface,	 used	 to	 compute	 slicef	 (CGPoint);	
nonEdgeLines	 =	 matrix	 of	 (x,y)	 rows	 defining	 exterior	 boundary	 for	 slope	 (RealMatrix);	

12

edgeLines	 =	 matrix	 of	 (x,y)	 rows	 defining	 interior	 regional	 boundaries	 (RealMatrix);	
materials	 =	 matrix	 of	 specific	 weight,	 cohesion,	 and	 friction	 angle	 for	 each	 material	 (RealMatrix);	
phreaticLine	 =	 matrix	 of	 (x,y)	 rows	 defining	 phreatic	 surface	 within	 cross-‐section	 (RealMatrix);	
myPrecision	 =	 decimal	 representation	 of	 the	 highest	 accuracy	 required,	 generally	 0.00001	 (float);	
maxIteration	 =	 maximum	 number	 of	 iterations	 for	 FS	 computation	 (unsigned	 int);	
	
(1) Use	 gammaWater,	 slipPoints,	 nonEdgeLines,	 edgeLines,	 materials,	 phreaticLine,	 and	 axisPoint	 to	 find:	

• W	 =	 sliceWeight	 =	 row	 vector	 of	 total	 weights	 for	 each	 slice;	
• 𝛼	 =	 sliceAlpha	 =	 row	 vector	 of	 alpha	 angle	 (see	 Fig	 1.);	
• 𝑐′	 =	 sliceCohesion	 =	 row	 vector	 of	 cohesion	 value	 in	 the	 material	 at	 the	 base	 of	 the	 slice;	
• w	 =	 sliceWidth	 =	 row	 vector	 of	 slice	 widths;	
• 𝜙′	 =	 sliceFrictionAngle	 =	 row	 vector	 of	 friction	 angle	 value	 in	 the	 material	 at	 the	 base	 of	 the	 slice;	
• u	 =	 sliceU	 =	 row	 vector	 of	 suction	 forces	 along	 the	 base	 of	 the	 slice;	
• 𝑓	 =	 slicef	 =	 row	 vector	 of	 perpendicular	 offset	 of	 the	 normal	 force	 from	 the	 center	 of	 moments;	
• 𝑅	 =	 sliceR	 =	 row	 vector	 of	 moment	 arm	 associated	 with	 the	 mobilized	 shar	 force;	
• x	 =	 slicex	 =	 row	 vector	 of	 horizontal	 distance	 from	 the	 centerline	 of	 each	 slice	 to	 the	 center	 of	 moments;	
• 𝛽	 =	 sliceLength	 =	 row	 vector	 of	 the	 length	 of	 the	 line	 that	 defines	 the	 bottom	 of	 the	 slice;	

(2) Interslice	 normal	 and	 shear	 forces	 are	 set	 to	 zero,	 and	 initial	 FSm	 is	 computed:	

• 𝐹𝑆!,!"# =
∑ !!!"! ! !"# ! !!" ! !"#(!!)

∑ ! !"#!"
	 //Equivalent	 to	 OMS	 FS	

(3) Lambda	 (𝜆)	 is	 set	 to	 zero,	 so	 interslice	 shear	 forces	 and	 (𝑋! − 𝑋!)	 are	 zero;	
(4) Choose	 initial	 𝐹𝑆 = 𝐹𝑆!,!"#×1.2	 as	 guessed	 FS;	
(5) while	 𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	

• Calculate	 N:	

i. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	

• Calculate	 𝐹𝑆!	 from	 this	 N	 value	 using:	

i. 𝐹𝑆! = ∑ !!!"! ! !"# ! !!" ! !"#(!!)
∑!"!∑!"

;	

(6) 	 end	 while	 //Once	 converged,	 𝐹𝑆!	 is	 equivalent	 to	 Bishop’s	 Simplified	 FS;	
(7) while	 𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	

• Calculate	 N:	

i. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	

• Calculate	 𝐹𝑆!	 from	 this	 N	 value	 using:	

i. 𝐹𝑆! =
∑(!!! !"#!! !!!" !"#!! !"#!)

∑(! !"#!)
;	

(8) end	 while	 //Once	 converged,	 𝐹𝑆!	 is	 equivalent	 to	 Janbu’s	 Simplified	 FS;	
(9) Use	 𝐹𝑆!	 and	 N	 from	 stage	 (5)	 to	 calculate:	

• 𝐸! − 𝐸! = − !!!!!" !"#!! !"#!
!"

+ 𝑁 − !"#!! !"#!
!"

+ sin𝛼 ;	

(10) Now	 use	 (𝐸! − 𝐸!)	 and	 an	 initial	 𝜆 = 0.33	 to	 compute:	
• 𝑋! − 𝑋! = 𝐸! − 𝐸! 𝜆𝑓(𝑥);	

(11) while	 𝐹𝑆! − 𝐹𝑆! > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	
• while	 𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	

i. Calculate	 N:	

1. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	

ii. Calculate	 𝐹𝑆!	 from	 this	 N	 value	 using:	

13

1. 𝐹𝑆! = ∑ !!!"! ! !"# ! !!" ! !"#(!!)
∑!"!∑!"

;	

• end	 while	 	
• while	 𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	

i. Calculate	 N:	

1. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	

ii. Calculate	 𝐹𝑆!	 from	 this	 N	 value	 using:	

1. 𝐹𝑆! =
∑(!!! !"#!! !!!" !"#!! !"#!)

∑(! !"#!)
;	

• end	 while	
• Use	 𝐹𝑆!	 and	 N	 from	 stage	 (5)	 to	 calculate:	

i. 𝐸! − 𝐸! = − !!!!!" !"#!! !"#!
!"

+ 𝑁 − !"#!! !"#!
!"

+ sin𝛼 ;	

• Use	 Newton-‐Raphson	 method	 to	 compute	 𝜆.	 	 Use	 this	 and	 (𝐸! − 𝐸!)	 to	 compute:	
i. 𝑋! − 𝑋! = 𝐸! − 𝐸! 𝜆𝑓(𝑥);	

(12) end	 while	 //Once	 converged,	 the	 joint	 FS	 value	 here	 is	 equal	 to	 either	 the	 Morgenstern-‐Price	 or	 the	 Spencer’s	
FS	 value	 depending	 on	 the	 function	 𝑓(𝑥);	

Output:	 FS	 value	 for	 the	 given	 slip	 surface;	

Fig. 3. Pseudocode for FS evaluation

2.2.3 Smooth Slip Generation
In order to ensure that randomly generated slip surfaces are smooth and kinematically
admissible, bSLOPE uses the approach specified by Cheng (2003). Consider Figure 5, and the
associated pseudocode to generate the slip surface. This method naturally produces smooth,
concave-up slip surfaces for the initial population.

Fig. 4. Generation of non-circular slip surface (from M. Tabarroki, personal communication)

14

Input:	 ground	 =	 matrix	 representation	 of	 path	 defining	 the	 ground	 surface	 –	 composed	 of	 (x,y)	 row	 vectors;	

bedrock	 =	 matrix	 representation	 of	 path	 defining	 “bedrock”,	 a	 lower	 boundary	 for	 our	 search	 –	 composed	 of	 (x,y)	 row	
vectors;	

xStartRange	 =	 row	 vector	 with	 an	 upper	 and	 lower	 X	 bound	 for	 the	 start	 range	 of	 the	 slip	 in	 the	 ground	 surface;	

xEndRange	 =	 row	 vector	 with	 upper	 and	 lower	 X	 bound	 for	 the	 end	 range	 of	 the	 slip	 in	 the	 ground	 surface;	

(1) Generate	 a	 random	 𝑥!	 and	 𝑥!	 within	 the	 xStartRange	 and	 xEndRange,	 respectively;	
(2) Generate	 𝑥!	 through	 𝑥!!!	 by	 uniformly	 dividing	 the	 horizontal	 distance	 between	 𝑥!	 and	 𝑥!;	
(3) 𝑌!"#	 and	 𝑌!"#	 are	 calculated	 for	 𝑥!!!;	
(4) 𝜎!!!	 is	 randomly	 generated	 between	 0	 and	 1;	
(5) 𝑦!!! = 𝜎!!! 𝑌!"# − 𝑌!"# + 𝑌!"#	 ;	
(6) Steps	 3-‐5	 are	 repeated	 for	 each	 successive	 x-‐coordinate	 back	 towards	 𝑥!;	

Output:	 matrix	 of	 [𝑥!, 𝑥!,𝜎!,… 𝜎!!!]	 defining	 the	 slip;	

[G	 =	 generation	 number;	 FES	 =	 number	 of	 function	 evaluations;	 F	 &	 Cr	 =	 control	 parameter	 settings]	

Fig. 5. Pseudocode of general CoDE Algorithm (from Wang et al. 2011)

2.2.4 CoDE Implementation
The core of bSLOPE’s computation engine is the CoDE algorithm. This algorithm was originally
published to minimize vectors. In essence, the algorithm can be summed up as follows: An
initial population of slip surfaces randomly generated with Cheng’s algorithm is given to the
algorithm. Successive generations of the slip surfaces are evolved to find the global optimum.
At each generation, three trial vectors are generated for each member of the population. The
lowest-FS “child” of each current vector is selected for further mutation and selection. The use
of three mutation strategies for every member of the population makes the algorithm resilient,
and not easily captured in local minima. What follows is a brief pseudocode for how the
algorithm proceeds.
	

Input:	 NP:	 the	 number	 of	 individuals	 at	 each	 generation,	 i.e.,	 the	 population	 size.	

Max_FES:	 maximum	 number	 of	 function	 evaluations.	

The	 strategy	 candidate	 pool:	 “rand/1/bin”,	 “rand/2/bin”,	 and	 “current-‐to-‐rand/1”.	

The	 parameter	 candidate	 pool:	 [𝐹 = 1.0,𝐶! = 0.1],	 [𝐹 = 1.0,𝐶! = 0.9],	 and	 [𝐹 = 0.8,𝐶! = 0.2].	

(1) G	 =	 0;	

(2) Generate	 an	 initial	 population	 𝑃! = 𝑥!,!,… , 𝑥!",! 	 by	 uniformly	 and	 randomly	 sampling	 from	 the	 feasible	
solution	 space;	

(3) Evaluate	 the	 objective	 function	 values	 𝑓 𝑥!,! ,… , 𝑓(𝑥!",!);	

(4) 𝐹𝐸𝑆 = 𝑁𝑃;	

(5) while	 𝐹𝐸𝑆 < 𝑀𝑎𝑥_𝐹𝐸𝑆	 do	

(6) 𝑃!!! = ∅;	

(7) for	 𝐼 = 1:𝑁𝑃 do	

(8) Use	 the	 three	 trial	 vector	 generation	 strategies,	 each	 with	 a	 control	 parameter	 setting	 randomly	 selected	
from	 the	 parameter	 candidate	 pool,	 to	 generate	 three	 trial	 vectors	 𝑢!_!,! ,	 𝑢!_!,! ,	 and	 𝑢!_!,! 	 for	 the	 target	
vector𝑥!,!;	

(9) Evaluate	 the	 objective	 function	 values	 of	 the	 three	 trial	 vectors	 𝑢!_!,! ,	 𝑢!_!,! ,	 and	 𝑢!_!,!;	

15

(10) Choose	 the	 best	 trial	 vector	 (denoted	 as	 𝑢!!,!
∗)	 from	 the	 three	 trial	 vectors;	

(11) 𝑃!!! = 𝑃!!! 𝑠𝑒𝑙𝑒𝑐𝑡(𝑥!,! , 𝑢!!,!
∗);	

(12) 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + 3;	

(13) end	 for	

(14) 𝐺 = 𝐺 + 1;	

(15) end	 while	

Output:	 the	 individual	 with	 the	 smallest	 objective	 function	 value	 in	 the	 population.	

[G	 =	 generation	 number;	 FES	 =	 number	 of	 function	 evaluations;	 F	 &	 Cr	 =	 control	 parameter	 settings]	

Fig. 6. Pseudocode of general CoDE Algorithm (from Wang et al. 2011)

	 	

16

2.3 Example Problems

2.3.1 Zolfaghari et al. (2005) Inclined Weak Layer
This problem has an inclined weak material between three other layers. The problem geometry
was recreated in bSLOPE, and both circular and non-circular failure searches were performed,
and the results were compared with those published by Zolfaghari et al. (2005) and others.

Layers 1 2 3 4
𝑐! (kPa) 15 17 5 35
𝜙′ (deg) 20 21 10 28
𝛾 (kg/m3) 19 19 19 19

Table 2. Material properties for Zolfaghari et al. (2005) example problem 1.

Fig. 7. Slope geometry and materials from Zolfaghari, et al. (2005) example problem.

	

Fig. 8. Circular Failure through inclined weak layer. Bishop’s Method.

17

Search Method FS Value
Simple	 Genetic	 Algorithm	 (Zolfaghari et al. 2005),

Bishop
1.475

CoDE (Tabarroki 2012, this report), Bishop 1.39

Table 3. FS values from circular failure in Example Problem 1.

The FS values for the circular failure analysis are very close, and the CoDE engine produced a
slip surface that is nearly identical to the results in Zolfaghari et al. (2005). bSLOPE produces a
FS that is 5.7% less than the reference value.

	

Fig. 9. Non-circular failure through inclined weak layer. Spencer’s Method.

Search	 Method	 FS	 Value	

Simple	 Genetic	 Algorithm	 (Zolfaghari	 et	 al.	 2005),	 M-‐P	 1.24	
Critical	 Acceleration	 (Sarma	 and	 Tan	 2006),	 Spencer	 1.091	

MPSO	 (Cheng	 et	 al.	 2007),	 Spencer	 1.1289	
Real-‐Coded	 GA	 (Li	 et	 al.	 2010),	 Spencer	 1.114	

CoDE	 (Tabarroki	 2012,	 this	 report),	 Spencer	 1.12	

Table 4. FS values from non-circular failure search from various publications.

	
The	 non-‐circular	 failure	 surface	 produced	 by	 the	 CoDE	 engine	 in	 bSLOPE	 is	 nearly	 identical	 to	
the	 slip	 surfaces	 presented	 in	 many	 of	 the	 other	 papers.	 	 This	 computation	 was	 performed	 in	
approximately	 30	 seconds	 on	 a	 mobile	 processor	 with	 limited	 RAM.	 	 8000	 slip	 surfaces	 were	
considered	 in	 generating	 this	 result,	 though	 convergence	 generally	 occurred	 closer	 to	 4000	
iterations.	
	 	

18

2.3.2 Zolfaghari et al. (2005) Horizontal Weak Layer + Groundwater
The next problem considers the same material properties as the first problem, but has the layers
aligned horizontally. We compute the FS value with and without a phreatic surface present.

Layers 1 2 3 4
𝑐! (kPa) 15 17 5 35
𝜙′ (deg) 20 21 10 28
𝛾 (kg/m3) 19 19 19 19

Table 5. Material properties for Zolfaghari et al. (2005) example problem 1.

Fig. 10. Non-circular failure through horizontally oriented weak layer without groundwater. Spencer’s Method.

19

Search	 Method	 FS	 Value	
Simple	 Genetic	 Algorithm	 (Zolfaghari	 et	 al.	 2005),	 M-‐P	 1.48	
Simulated	 Annealing	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.3961	
Genetic	 Algorithm	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.3733	

Simple	 Harmony	 Search	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.3729	
Modified	 Harmony	 Search	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.3501	

CoDE	 (Tabarroki	 2012,	 this	 report),	 Spencer	 1.35	

Table 6. FS values without water table from various publications.

The FS value from the bSLOPE’s CoDE Engine is quite efficient at locating the critical slip
surface, requiring only 6000 trial slip surfaces to reliably converge to the lowest-FS slip surface.

Fig. 11. Non-circular failure through horizontally oriented weak layer with ground water. Spencer’s Method.

Search	 Method	 FS	 Value	
Simple	 Genetic	 Algorithm	 (Zolfaghari	 et	 al.	 2005),	 M-‐P	 1.36	
Simulated	 Annealing	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.2837	
Genetic	 Algorithm	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.2324	

Simple	 Harmony	 Search	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.2326	
Modified	 Harmony	 Search	 (Cheng	 and	 Lau	 2008),	 Spencer	 1.2247	

CoDE	 (Tabarroki	 2012,	 this	 report),	 Spencer	 1.23	

Table 7. FS values with water table from various publications.

Once again, the CoDE engine produced the correct FS value with a phreatic surface specified.

20

2.3.3 Duncan and Wright (2005) - James Bay Dike
Next, we consider a now classic slope stability problem, the James Bay Dike. The material
properties follow.

Layers 1 2 3 4
𝑐! (kPa) 0 41 34.5 31.2
𝜙′ (deg) 30 0 0 0
𝛾 (kg/m3) 20 20 18.8 20.3

Table 8. Material properties for James Bay Dike.

Fig. 11. James Bay Dike geometry and materials.

Fig. 12. Circular failure surface through James Bay Dike.

Source FS Value
SLOPE/W	 Example	 (Geo-‐Slope	 2008),	 Bishop 1.459
CoDE (Tabarroki 2012, this report), Bishop 1.44

Table 9. Circular FS values for James Bay Dike.

As we can see, CoDE produced a reasonable estimate of the FS value in this case. The circle
is nearly identical to the one presented in Duncan and Wright (2005), and in the SLOPE/W
deterministic example problem, and the difference in FS can be assumed to be due to slight
differences in Bishop’s implementation.

21

Next, a noncircular search was performed using 10 vertices. bSLOPE produced a large slide
through the base material above bedrock.

Fig. 13. Noncircular failure surface through James Bay Dike.

Source FS Value

Duncan	 and	 Wright	 (2005),	 Spencer 1.17
CoDE (Tabarroki 2012, this report), Spencer 1.16

Table 10. Noncircular FS values for James Bay Dike.

The FS value from bSLOPE is very close to the reference value. The shape of the failure
surface is almost identical to the published one from Duncan and Wright (2005). Verification of
this surface was performed with the MATLAB code by M. Tabarroki which resulted in a nearly
identical surface with 20 vertices and a FS value of 1.1561, thus verifying the value from
bSLOPE.
	

3 Conclusions
bSLOPE	 is	 the	 first	 mobile	 engineering	 analysis	 tool	 of	 its	 kind	 and	 demonstrates	 the	 potential	
of	 mobile	 devices	 for	 advanced	 applications	 in	 engineering	 research	 and	 practice.	 	 It	 uses	 an	
advanced	 evolutionary	 optimization	 algorithm	 to	 accurately	 solve	 for	 circular	 and	 noncircular	
failure	 surfaces	 through	 a	 variety	 of	 complex	 stratigraphic	 geometries	 and	 properties.	 	 It	
performs	 very	 well	 in	 the	 iOS	 environment,	 and	 can	 be	 easily	 ported	 to	 run	 on	 Mac	 OS,	
Windows,	 or	 Linux	 because	 it	 depends	 on	 very	 few	 external	 libraries.	
	
bSLOPE	 demonstrates	 	 that	 tablets	 have	 reached	 a	 point	 in	 their	 evolution	 that	 they	 now	
contain	 the	 computational	 resources	 necessary	 to	 perform	 advanced	 engineering	 analysis	
untethered	 from	 the	 confines	 of	 desk	 top	 computing.	 	 However,	 they	 require	 specialized	
algorithm	 design	 and	 translation	 of	 existing	 libraries	 in	 order	 to	 utilize	 the	 power	 available.	 	 	 	
	

22

4 References
Arai,	 K.,	 and	 Tagyo,	 K.	 	 1985.	 	 Determination	 of	 noncircular	 slip	 surface	 giving	 the	 minimum	

factor	 of	 safety	 in	 slope	 stability	 analysis.	 	 Soils	 and	 Foundations,	 25(1):	 43-‐51.	

Baker,	 R.	 	 1980.	 	 Determination	 of	 the	 critical	 slip	 surface	 in	 slope	 stability	 computations.	 	

International	 Journal	 for	 Numerical	 and	 Analytical	 Methods	 in	 Geomechanics,	 4(4):	 333-‐
359.	 	

Bardet,	 J.P.	 and	 Kapuskar,	 M.	 M.	 	 1989.	 	 A	 simplex	 analysis	 of	 slope	 stability.	 	 Computers	 and	

Geotechnics	 8,	 329-‐348.	
	
Bishop,	 A.W.	 	 1955.	 	 The	 use	 of	 the	 slip	 circle	 in	 the	 stability	 analysis	 of	 slopes.	 	 Géotechnique,	

5(1):	 7-‐17.	 	

Cheng,	 Y.M.	 	 2003.	 	 Location	 of	 critical	 failure	 surface	 and	 some	 further	 studies	 on	 slope	

stability	 and	 analysis.	 	 Computers	 and	 Geotechnics,	 30(3):	 	 255-‐267.	 	
	
Cheng,	 Y.M.,	 Li,	 L.,	 Chi,	 S.,	 and	 Wei,	 W.B.	 	 2007.	 	 Particle	 swarm	 optimization	 algorithm	 for	 the	

location	 of	 the	 critical	 non-‐circular	 failure	 surface	 in	 two-‐dimensional	 slope	 stability	
analysis.	 	 Computers	 and	 Geotechnics,	 34(2):	 92-‐103.	

	
Duncan,	 J.M.,	 and	 Wright,	 Stephen	 G.	 	 2005.	 	 Soil	 Strength	 and	 Slope	 Stability.	 	 Hoboken,	 NJ:	

John	 Wiley	 &	 Sons,	 2005.	
	
Duncan,	 J.M.	 	 1996.	 	 State	 of	 the	 art:	 limit	 equilibrium	 and	 finite-‐element	 analysis	 of	 slopes.	 	 J.	

Geotech.	 Eng.,	 ASCE	 122,	 7,	 577-‐597.	
	
Duncan,	 J.M.	 	 (1996).	 	 Soil	 slope	 stability	 analysis.	 	 In	 Turner	 &	 Schuster	 (eds.),	 Landslides:	

Investigation	 and	 Mitigation	 (Special	 Report	 247).	 	 National	 Academy	 Press,	 337-‐371.	

Eberhardt,	 Erik.	 	 2003.	 	 Rock	 Slope	 Stability	 Analysis	 –	 Utilization	 of	 Advanced	 Numerical	

Techniques.	 <http://www.eos.ubc.ca/personal/erik/e-‐papers/EE-‐
SlopeStabilityAnalysis.pdf>	

	
Fredlund,	 D.G.	 and	 Krahn,	 J.	 	 1977.	 	 Comparison	 of	 slope	 stability	 methods	 of	 analysis.	 	

Canadian	 Geotechnical	 Journal,	 14:429-‐439.	
	
GEO-‐SLOPE	 International	 Ltd.	 	 2001.	 	 SLOPE/W	 user’s	 manual,	 version	 4.0.	 	 GEO-‐SLOPE	

International	 Ltd.,	 Calgary,	 Alta.	
	

23

GEO-‐SLOPE	 International	 Ltd.	 	 2008.	 	 Probability	 –	 James	 Bay	 Case	 History.	 	 SLOPE/W	 Example	
Problem.	 	 GEO-‐SLOPE	 International	 Ltd.,	 Calgary,	 Alta.	

	
Greco,	 V.R.	 	 1996.	 	 Efficient	 Monte	 Carlo	 technique	 for	 locating	 critical	 slip	 	 surface.	 Journal	 of	

Geotechnical	 Engineering,	 ASCE,	 122,	 517–525.	 	
	
Janbu,	 N.	 1954.	 	 Application	 of	 composite	 slip	 surfaces	 for	 stability	 analysis.	 	 In	 Proceedings	 of	

the	 European	 Conference	 on	 Stability	 of	 Earth	 Slopes.	 	 Stockholm,	 Sweden.	 	 Vol.	 3,	 pp.	
43-‐49.	

	
Li,	 Yu-‐Chao,	 et	 al.	 	 2010.	 	 An	 efficient	 approach	 for	 locating	 the	 critical	 slip	 surface	 in	 slope	

stability	 analyses	 using	 a	 real-‐coded	 genetic	 algorithm.	 	 NRC	 Research	 Press	 Web	 Site.	 	
25	 June.	

	
Morgenstern,	 N.R.,	 and	 Price,	 V.E.	 	 1965.	 	 The	 analysis	 of	 the	 stability	 of	 general	 slip	 surfaces.	 	

Géotechnique,	 15(1):	 79-‐93.	
	
Nguyen,	 V.U.	 	 1985.	 	 Determination	 of	 critical	 slope	 failure	 surfaces.	 	 J.	 Geotech.	 Eng.	 ASCE,	

111:238-‐250.	
	
Pham,	 Ha	 T.V.	 and	 Fredlund,	 Delwyn	 G.	 	 2003.	 	 The	 application	 of	 dynamic	 programming	 to	

slope	 stability	 analysis.	 NRC	 Research	 Press,	 11	 August.	
<http://www.soilvision.com/downloads/docs/pdf/research/DynamicProgramming.pdf>	

	
Sarma,	 S.K.	 	 1973.	 	 Stability	 analysis	 of	 embankments	 and	 slopes.	 	 Géotechnique,	 23(3):	 423-‐

433.	
	
Sarma,	 S.K.	 	 1979.	 	 Stability	 analysis	 of	 embankments	 and	 slopes.	 	 Journal	 of	 Geotechnical	

Engineering,	 ASCE,	 105(12):	 1511-‐1524.	
	
Spencer,	 E.	 	 1967.	 	 A	 method	 for	 analysis	 of	 the	 stability	 of	 embankments	 assuming	 parallel	

interslice	 forces.	 	 Géotechnique,	 17(1):	 11-‐26.	
	
Tabarroki,	 M.	 2012.	 Computer	 Aided	 Slope	 Stability	 Analysis	 Using	 Optimization	 and	 Parallel	

Computing	 Techniques.	 M.Sc.	 thesis,	 University	 of	 Science	 Malaysia.	
	
Wang,	 Yong,	 et	 al.	 	 2011.	 	 Differential	 Evolution	 with	 Composite	 Trial	 Vector	 Generation	

Strategies	 and	 Control	 Parameters.	 	 Evolutionary	 Computation,	 IEEE	 Transactions	 on,	
vol.15,	 no.1,	 pp.55-‐66,	 Feb.	

	

24

Zolfaghari,	 A.R.,	 Heath,	 A.C.,	 and	 McCombie,	 P.F.	 2005	 	 Simple	 genetic	 algorithm	 search	 for	
critical	 non-‐circular	 failure	 surface	 in	 slope	 stability	 analysis.	 	 Computers	 and	
Geotechnics,	 32(3):	 139-‐152.	

	 	

25

Appendix A: Function Documentation

26

Page 1 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

//
// MWCoDEEngine.m
// bSLOPE
//
// Created by Oliver Rickard on 2/19/12.
// Copyright (c) 2012 Mobile World Software. All rights reserved.
// Port of MATLAB code by Mohammad Tabarroki, published
// with his permission.
//

#import "MWCoDEEngine.h"
#import "SMUGMath.h"
#include <Accelerate/Accelerate.h>
#include "JSGCDDispatcher.h"
#include "FSSlipPointsDataController.h"

/**
 This method uses the CoDE (Composite Differential Evolution, Yong Wang 2011

) to generate a new slip surface from an existing one.

 Input parameters are:
 RealMatrix *p: initial matrix in the form [x1,xn,sigma2,...sigman-1], where

sigmai is between 0 and 1.
 RealMatrix *lu: Lower and upper bounds for each x-coordinate, generated

through Cheng 2003 strategy.
 int i: current index of the slip surface.
 RealVector *F: Calibration parameter vector. Contains one F value for each

generation strategy. See Yong Wang 2011.
 RealVector *CR: Calibration parameter vector. Contains one CR value for

each generation strategy. See Yong Wang 2011.
 int popsize: size of the current population of slip surfaces.
 int n: selection index.
 RealVector *paraIndex: vector of parameter indices. These are randomized

from the set of F and CR for each slip surface.

 Output is a new RealMatrix of three row vectors which represent mutants of

the three vector generation strategies.
*/
static RealMatrix *generator(RealMatrix *p, RealMatrix *lu, int i,

RealVector *F, RealVector *CR, int popsize, int n, RealVector *paraIndex
) { }

@implementation MWCoDEEngine

#pragma mark - Utility Functions for Circular Surfaces

/**
 This function is for circular slip surfaces. It simply computes the 2D

arctangent between 0 and 360 degrees.

 Input parameters are:
 float y: y-value
 float x: x-value

 Output is the float value of the 2-D arctangent of the x and y values.

27

Page 2 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

*/
+(float)atan2d_0_360Y:(float)y X:(float)x;
{ }

/**
 This function is for circular slip surfaces. It finds the center of a

circle of Radius R which intersects points p1 and p2.

 Input parameters:
 CGPoint p1: CGPoint C struct value with x and y parameters. First point

value.
 CGPoint p2: CGPoint C struct value with x and y parameters. Second point

value.
 float R: float value representing the radius of the circle.

 Output is the CGPoint struct representing the center of the circle.

*/
+(CGPoint)findCenterP1:(CGPoint)p1 P2:(CGPoint)p2 R:(float)R;
{ }

/**
 This function is for circular slip surfaces. It finds the minimum radius

of a circle containing points p1 and p2.

 Input parameters:
 CGPoint p1: CGPoint C struct value with x and y parameters. First point

value.
 CGPoint p2: CGPoint C struct value with x and y parameters. Second point

value.

 Output is the float value of the radius.
*/
+(float)findMinR2P1:(CGPoint)p1 P2:(CGPoint)p2;
{ }

#pragma mark - Utility Functions

/**
 This function finds the intersection between two lines defined by [p1,p2]

and [p3,p4].

 Input Parameters:
 CGPoint p1: CGPoint C struct with x and y parameters. One of the points

defining a line.
 CGPoint p2: CGPoint C struct with x and y parameters. One of the points

defining a line.
 CGPoint p3: CGPoint C struct with x and y parameters. One of the points

defining a line.
 CGPoint p4: CGPoint C struct with x and y parameters. One of the points

defining a line.

 Output is a CGPoint value for the intersection between the two lines.
 */
+(CGPoint)lineSegmentCrossP1:(CGPoint)p1 P2:(CGPoint)p2 P3:(CGPoint)p3 P4:

(CGPoint)p4;
28

Page 3 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

{ }

/**
 This interpolates between p1 and p2, with the restriction that the

interpolated value must be below the ground surface. If it is above
the ground surface, then the value is interpolated in the ground matrix
.

 CGPoint p1: First point defining line, usually line between vertices on a
slip surface. CGPoint C struct with x and y parameters.

 CGPoint p2: Second point defining line, usually line between vertices on a
slip surface. CGPoint C struct with x and y parameters.

 RealMatrix *ground: Matrix of (x,y) row vectors of vertices of the ground
surface.

 Output is the interpolated y value.
 */
+(float)lineOrBelowP1:(CGPoint)p1 P2:(CGPoint)p2 X:(float)x ground:

(RealMatrix *)ground;
{ }

/**
 Function that generates a RealMatrix from an array of RealMatrix objects.

 Input Parameters:
 NSArray *arr: NSArray of RealMatrix objects. Do not have to be all the

same size.

 Output is a RealMatrix with each matrix appended to the bottom of a larger

matrix. The largest column number is taken for the output matrix, and
zeros are inserted in the matrix for any matrices with less columns.

 */
+(RealMatrix *)matrixFromArray:(NSArray *)arr;
{ }

/**
 This function finds the radius of the moment arm betweent the point, and

the line defined by v1 and v2.

 Input parameters:
 CGPoint p1: Center of the rotation. CGPoint C struct with x and y

parameters.
 CGPoint v1: One of the points defining the direction of the force vector.

CGPoint C struct with x and y parameters.
 CGPoint v2: The other point defining the direction of the force vector.

CGPoint C struct with x and y parameters.

 Output is the float value of the radius of moment arm.
*/
+(float)getMomentArmPt:(CGPoint)pt V1:(CGPoint)v1 V2:(CGPoint)v2;
{ }

/**
 This function computes the perpendicular offset of the normal placed at the

midpoint of [v1,v2] towards pt between the that normal ray, and pt.

 Input parameters:

29

Page 4 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 CGPoint pt: CGPoint C struct with x and y parameters. This is the point
that the distance is calculated from.

 CGPoint v1: CGPoint C struct with x and y parameters. Defines one side of
the line.

 CGPoint v2: CGPoint C struct with x and y parameters. Defines other side
of the line.

 Output is the float distance from pt to the line normal to [v1,v2].
*/
+(float)point_prpnd_line:(CGPoint)pt V1:(CGPoint)v1 V2:(CGPoint)v2;
{ }

/**
 This function computes a linearly interpolated yVal value between two

neighboring points. xVal must be between neighbor1.x and neighbor2.x,
and neighbor1.x must be less than neighbor2.x.

 Input Parameters:
 CGPoint neighbor1: This is the left neighbor of the point that needs to be

interpolated. CGPoint C struct with x and y parameters.
 CGPoint neighbor2: This is the right neighbor of the point that needs to be

interpolated. CGPoint C struct with x and y parameters.
 float xVal: This is the x value for which we want to interpolate a y value.

 Output is a float y interpolation.
 */
+(float)interp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2 xVal:(float)

xVal;
{ }

/**
 This function computes linearly interpolated yVal between two neighboring

points. neighbor1 and neighbor2 need not be in any particular order.
The if tree is in place to ensure that the minimum possible number of
comparisons is done for most use cases.

 Input Parameters:
 CGPoint neighbor1: This is the first neighbor of the point that needs to be

interpolated. CGPoint C struct with x and y parameters.
 CGPoint neighbor2: This is the other neighbor of the point that needs to be

interpolated. CGPoint C struct with x and y parameters.
 float xVal: This is the x value for which we want to interpolate a y value.
 float defValue: Default interpolation value if xVal is not within the range

[neighbor1.x,neighbor2.x] or [neighbor2.x,neighbor1.x].

 Output is the y value of the interpolation. If the xVal is not within the

correct range, then the default value will be returned.
 */
+(float)safeInterp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2 xVal:

(float)xVal defValue:(float)defValue;
{ }

/**
 This function performs a safeInterp on all of the values in xVals.

 Input Parameters:

30

Page 5 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 CGPoint neighbor1: This is the first neighbor of the point that needs to be
interpolated. CGPoint C struct with x and y parameters.

 CGPoint neighbor2: This is the other neighbor of the point that needs to be
interpolated. CGPoint C struct with x and y parameters.

 RealVector *xVals: These are the x values for which we want to interpolate
y values.

 float defValue: Default interpolation value if xVal is not within the range
[neighbor1.x,neighbor2.x] or [neighbor2.x,neighbor1.x].

 Output is a vector of interpolated y values. If the xVal is not within the

correct range, then the default value will be inserted at that index.
 */
+(RealVector *)safeInterp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2

xVals:(RealVector *)xVals defValue:(float)defValue;
{ }

/**
 Linearly interpolates between the values in x and y for all x-values in xi.

Default value is inserted in the return vector for any values outside
of x.

 Input Parameters:
 RealVector *x: x-values for the points between which we want to interpolate

.
 RealVector *y: y-values for the points between which we want to interpolate

.
 RealVector *xi: x-values that we want to interpolate a y value.
 float defValue: Default value if a particular xi is not within the x range.

 Output is a vector of y-values at each xi.
 */
//Linearly interpolates between the values (x,y) for all x-values in xi.
+(RealVector *)lininterp1fX:(RealVector *)x Y:(RealVector *)y Xi:(RealVector

*)xi DefValue:(float)defValue;
{ }

#pragma mark - GLE Implementation, non-circular

/**
 Newton Raphson method to provide a new lambda value. See Newton Raphson on

Wikipedia.

 Input Parameters:
 float FSm: FS from moment equilibrium.
 float FSmOld: Old FS from moment equilibrium.
 float FSf: FS from force equilibrium.
 float FSfOld: Old FS from force equilibrium
 float myLambda: Current lambda value.
 float myLambdaOld: old lambda value.

 Output is the new lambda given the input parameters.
 */
+(float)newtonRaphsonFSm:(float)FSm FSmOld:(float)FSmOld FSf:(float)FSf

FSfOld:(float)FSfOld myLambda:(float)myLambda myLambdaOld:(float)
myLambdaOld;

{ }
31

Page 6 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

/**
 This function computes the force-equilibrium FS value for the slices given

the parameters in the vector arguments. Computed according to the GLE
formulation in Fredlund and Krahn.

 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for

the base of each slice. Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the

base of each slice. Units of m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line

defining the base of each slice. Units of degrees.
 RealVector *sN: Vector containing the normal force along the bottom of each

slice. Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of

each slice. Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle

of the soil along the base of each slice. Units of degrees.

 Output is a float value for the force-equilibrium FS.
*/
+(float)GLEfsFSliceCohesion:(RealVector *)sCohesion sliceLength:(RealVector

*)sLength sliceAlpha:(RealVector *)sAlpha sliceN:(RealVector *)sN
sliceU:(RealVector *)sU sliceFrictionAngle:(RealVector *)sFrictionAngle;

{ }

/**
 This function computes the moment-equilibrium FS value for the slices given

the parameters in the vector arguments. Computed according to the GLE
formulation in Fredlund and Krahn.

 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for

the base of each slice. Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the

base of each slice. Units of m.
 RealVector *sR: Vector containing the moment arm for each slice. Units of

m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line

defining the base of each slice. Units of degrees.
 RealVector *sN: Vector containing the normal force along the bottom of each

slice. Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of

each slice. Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle

of the soil along the base of each slice. Units of degrees.
 RealVector *sWeight: Vector containing weight of the material in each slice

. Units of kN.
 RealVector *sf: Vector containing perpendicular offset of the normal force

from the center of rotation. Units of m.
 RealVector *sx: Vector containing horizontal distance from the slice to the

center of rotation. Units of m.

 Output is a float value for the moment-equilibrium FS.
 */

32

Page 7 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

+(float)GLEfsMSliceCohesion:(RealVector *)sCohesion sliceLength:(RealVector
*)sLength sliceR:(RealVector *)sR sliceN:(RealVector *)sN sliceU:
(RealVector *)sU sliceFrictionAngle:(RealVector *)sFrictionAngle
sliceWeight:(RealVector *)sWeight slicef:(RealVector *)sf slicex:
(RealVector *)sx;

{ }

/**
 This function generates the sliceN vector, which is the total nomral force

on the base of each slice in vector form.

 Input parameters:
 RealVector *sWeight: Vector containing the weight of each slice. Units of

kN.
 RealVector *sXr_Xl: Vector containing the resultant of the vertical

interslice shear forces for each slice. Units of kPa.
 RealVector *sCohesion: This is a vector containing one cohesion value for

the base of each slice. Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the

base of each slice. Units of m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line

defining the base of each slice. Units of degrees.
 RealVector *sU: Vector containing the suction force along the bottom of

each slice. Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the internal friction

angle of the soil along the base of each slice. Units of degrees.
 float trialF: The current FS for the current trial vector.

 Output is a vector of slice normal forces, sliceN.
*/
//This function generates the sliceN vector, the total normal force on the

base of the slice.
+(RealVector *)GLEsliceNSliceWeight:(RealVector *)sWeight sliceXr_Xl:

(RealVector *)sXr_Xl sliceCohesion:(RealVector *)sCohesion sliceLength:
(RealVector *)sLength sliceAlpha:(RealVector *)sAlpha sliceU:(RealVector
*)sU sliceFrictionAngle:(RealVector *)sFrictionAngle trialF:(float)
trialF;

{ }

/**
 This function finds the FS using the ordinary method of slices (OMS), which

is the first stage of the GLE solution.

 Input Parameters:
 RealVector *sliceWeight: Vector containing weights of each slice. Units of

kN.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the

base of each slice. Units of degrees.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of

each slice. Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that

defines the bottom of each slice. Units of m.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of

each slice at the base. Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each

slice. Units of kPa.
33

Page 8 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 RealVector *sliceR: Vector containing length of moment arm to where forces
act. Units of m.

 Output is the FS as a float value.
 */
+(float)ordinaryFSBuilderv2SliceWeight:(RealVector *)sliceWeight sliceAlpha:

(RealVector *)sliceAlpha sliceCohesion:(RealVector *)sliceCohesion
sliceLength:(RealVector *)sliceLength sliceFrictionAngle:(RealVector *)
sliceFrictionAngle sliceU:(RealVector *)sliceU sliceR:(RealVector *)
sliceR;

{ }

/**
 This function finds the GLE simplified Bishop FS for the given slip surface

.

 Input Parameters:
 float FSm: FS value for moment equilibrium as initial guess for this

function.
 float myPrecision: Decimal value defining the precision at which

convergence has been reached. Generally 0.001 to 0.00001. Floats are
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice. Units of
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of
each slice. Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that
defines the bottom of each slice. Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the
base of each slice. Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each
slice. Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of
each slice at the base. Units of degrees.

 RealVector *slicef: Vector containing perpendicular offset of the normal
force from the center of rotation. Units of m.

 RealVector *slicex: Vector containing horizontal distance from the slice to
the center of rotation. Units of m.

 RealVector *sliceR: Vector containing length of moment arm to where forces
act. Units of m.

 unsigned int maxIteration: Maximum number of iterations before the slip
surface is assumed to not converge.

 Output is an array of moment-equilibrium FS and N value associated in an

NSArray, in that order.
 */
+(NSArray *)gleBishopTrialF:(float)FSm myPrecision:(float)myPrecision

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle slicef:(RealVector *)slicef slicex:
(RealVector *)slicex sliceR:(RealVector *)sliceR maxIteration:(unsigned
int)maxIteration;

{ }

/**
34

Page 9 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 This function finds the GLE simplified Janbu FS for the given slip surface.

 Input Parameters:
 float FSf: FS value for force equilibrium as initial guess for this

function.
 float myPrecision: Decimal value defining the precision at which

convergence has been reached. Generally 0.001 to 0.00001. Floats are
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice. Units of
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of
each slice. Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that
defines the bottom of each slice. Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the
base of each slice. Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each
slice. Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of
each slice at the base. Units of degrees.

 unsigned int maxIteration: Maximum number of iterations before the slip
surface is assumed to not converge.

 Output is an array of force-equilibrium FS and N value associated in an

NSArray, in that order.
 */
+(NSArray *)gleJanbuTrialF:(float)FSf myPrecision:(float)myPrecision

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function finds the inter-slice horizontal force resultant from the

difference between right and left side. Done for each slice, and
stored in a vector.

 Input Parameters:
 RealVector *sliceCohesion: Vector containing cohesion value at the base of

each slice. Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that

defines the bottom of each slice. Units of m.
 RealVector *sliceN: Vector containing the normal force along the bottom of

each slice. Units of kPa.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the

base of each slice. Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each

slice. Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of

each slice at the base. Units of degrees.
 float trialF: Current trial FS float value.

 Output is a vector of the Er-El float value at each slice.
 */

35

Page 10 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

+(RealVector *)GLESliceEr_ElSliceCohesion:(RealVector *)sliceCohesion
sliceLength:(RealVector *)sliceLength sliceN:(RealVector *)sliceN
sliceAlpha:(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU
sliceFrictionAngle:(RealVector *)sliceFrictionAngle trialF:(float)trialF
;

{ }

/**
 This function computes the force-equilibrium for a slip surface. This is

the last stage of the force GLE solution.

 Input Parameters:
 float FSf: Initial guess for force-equilibrium for the current slip surface

.
 float myPrecision: Decimal representing the precision at which convergence

is assumed to have occurred. Generally 0.001 to 0.00001.
 RealVector *sliceWeight: Vector containing weights of each slice. Units of

kN.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of

each slice. Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that

defines the bottom of each slice. Units of m.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the

base of each slice. Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each

slice. Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of

each slice at the base. Units of degrees.
 RealVector *sliceNf: Vector containing initial N value guess.
 float myLambda: Current lambda value from either an initial guess or the

Newton-Raphson method.
 unsigned int maxIteration: Maximum number of iterations before the slip

surface is assumed to not converge.

 Output is a NSArray of the force-equilibrium FS and the associated N value,

in that order.
 */
+(NSArray *)gleSolverFSf:(float)FSf myPrecision:(float)myPrecision

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle sliceNf:(RealVector *)sliceNf myLambda:
(float)myLambda maxIteration:(unsigned int)maxIteration;

{ }

/**
 This function computes the moment-equilibrium for a slip surface. This is

the last stage of the moment GLE solution.

 Input Parameters:
 float FSm: Initial guess for moment-equilibrium for the current slip

surface.
 float myPrecision: Decimal representing the precision at which convergence

is assumed to have occurred. Generally 0.001 to 0.00001.
 RealVector *sliceWeight: Vector containing weights of each slice. Units of

kN.
36

Page 11 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 RealVector *sliceCohesion: Vector containing cohesion value at the base of
each slice. Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that
defines the bottom of each slice. Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the
base of each slice. Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each
slice. Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of
each slice at the base. Units of degrees.

 RealVector *slicef: Vector containing perpendicular offset of the normal
force from the center of rotation. Units of m.

 RealVector *slicex: Vector containing horizontal distance from the slice to
the center of rotation. Units of m.

 RealVector *sliceR: Vector containing length of moment arm to where forces
act. Units of m.

 RealVector *sliceNm: Vector containing initial guess of N value.
 float myLambda: Current lambda value from either an initial guess or the

Newton-Raphson method.
 unsigned int maxIteration: Maximum number of iterations before the slip

surface is assumed to not converge.

 Output is a NSArray of the moment-equilibrium FS and the associated N value

, in that order.
 */
+(NSArray *)gleSolverFSm:(float)FSm myPrecision:(float)myPrecision

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle slicef:(RealVector *)slicef slicex:
(RealVector *)slicex sliceR:(RealVector *)sliceR sliceNm:(RealVector *)
sliceNm myLambda:(float)myLambda maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function is the primary analyzer engine that finds the FS for the

failure surface specified in slipPoints. It uses the GLE to determine
Morgenstern-Price and Spencer FS.

 Input Parameters:
 float gammaWater: Specific weight of water. Units of kN/m3.
 RealMatrix *slipPoints: Matrix of (x,y) row vectors defining the current

slip surface.
 CGPoint axisPoint: CGPoint C struct with x and y parameters. Point about

which moments are computed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is

assumed to have occurred.
37

Page 12 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 unsigned int maxIteration: Maximum number of iterations before the slip
surface is assumed to not converge.

 Output is the converged FS value for the given failure surface.
 */
+(float)analyzerEngineNonCircGammaWater:(float)gammaWater slipPoints:

(RealMatrix *)slipPoints axisPoint:(CGPoint)axisPoint nonEdgeLines:
(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:
(RealMatrix *)materials phreaticLine:(RealMatrix *)phreaticLine
myPrecision:(float)myPrecision maxIteration:(unsigned int)maxIteration;

{ }

/**
 This function is the real workhorse of the app. It takes an initial

population of "pos" vectors that define slip surfaces, then it
generates failure surfaces for those vectors, and evaluates the FS for
them using the GLE from Fredlund and Krahn. This is the single-
threaded function.

 Input Parameters:
 RealMatrix *pos: Matrix of "pos" row vectors. The first two values in the

row are the entry and exit x values, then the rest of the values are
the vertical placement of the vertex between 0 and 1.

 CGPoint axisPoint: CGPoint C struct with x and y parameters. This is the
center about which moments are computed.

 unsigned int noSlice: This is the number of slices for each slip surface.
 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip

surface is assumed to not converge.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of

the cross section.
 float gammaWater: Specific weight of water. Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

. Each polygon is a RealMatrix with (x,y) row vector.
 completionBlock: This is an Objective-C block to execute upon completion of

FS evaluations. This is here to retain the same method signature
between the single-threaded and multithreaded versions of this function
.

 Output is stored in the FSSlipPointsController singleton as an array of FS

values, and an array of RealMatrix slip points.
 */
+(void)FSsEvalPos:(RealMatrix *)pos axisPoint:(CGPoint)axisPoint noSlice:

(unsigned int)noSlice tolSlicing:(float)tolSlicing nonEdgeLines:
38

Page 13 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:
(RealMatrix *)materials phreaticLine:(RealMatrix *)phreaticLine
myPrecision:(float)myPrecision maxIteration:(unsigned int)maxIteration
ground:(RealMatrix *)ground bedrock:(RealMatrix *)bedrock gammaWater:
(float)gammaWater layersCord:(NSMutableArray *)layersCord
completionBlock:(void (^)())completionBlock;

{ }

#pragma mark - Slice Info Methods

/**
 This function gets the weight of a given slice.

 Input Parameters:
 float sWidth: Width of the given slice. Units of m.
 RealVector *yVals: Vector containing the y-values of the slice's centerline

with the stratigraphic boundaries. Units of m.
 RealVector *matVals: Vector containing the material indices for each

stratigraphic layer that the slice intersects.
 RealVector *materialsWeight: Vector containing the material weights for all

materials.

 Output is the weight of the slice in units of kN.
*/
+(float)slWeightBuilderSliceWidth:(float)sWidth yVals:(RealVector *)yVals

matVals:(RealVector *)matVals materialsWeight:(RealVector *)
materialsWeight;

{ }

/**
 This function builds the sliceInfo matrix which contains the relevant

parameters for each slice.

 Input Parameters:
 float gammaWater: Specific weight of water. Units of kN/m3.
 RealMatrix *slipPoints: Matrix representation of the slipPoints that define

the failure surface. Matrix of (x,y) row-vectors.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 CGPoint axisPoint: CGPoint C struct with x and y parameters. This is the

center of rotation for the FS calculations.

 Output is the sliceInfo matrix that contains rows in this order:

sliceWeight, sliceAlpha, sliceCohesion, sliceWidth, sliceFrictionAngle,
sliceU, slicef, sliceR, slicex.

*/
+(RealMatrix *)sliceInfoBuilderv2GammaWater:(float)gammaWater slipPoints:

(RealMatrix *)slipPoints nonEdgeLines:(RealMatrix *)nonEdgeLines
edgeLines:(RealMatrix *)edgeLines materials:(RealMatrix *)materials
phreaticLine:(RealMatrix *)phreaticLine axisPoint:(CGPoint)axisPoint;

39

Page 14 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

{ }

/**
 This function generates additional vertices for the failure

surfacecontained in origSlipPoints according to the rules in Cheng.

 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the

stratigraphic elements in the cross section as polygons. Each
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the
failure surface. (x,y) row vectors.

 Output is a RealMatrix of the origSlipPoints, plus the new inserted points.
*/
+(RealMatrix *)moreSlicesRegionPointsLayersCord:(NSMutableArray *)layersCord

slipPoints:(RealMatrix *)origSlipPoints;
{ }

/**
 This function generates additional vertices for the failure

surfacecontained in origSlipPoints according to the rules in Cheng.

 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the

stratigraphic elements in the cross section as polygons. Each
RealMatrix has (x,y) row vectors.

 RealMatrix *slip: Original matrix of slip points that compose the failure
surface. (x,y) row vectors.

 Output is a RealMatrix of the slip, plus the new inserted points.
 */
+(RealMatrix *)moreSlicesCrossBoundaryLayersCord:(NSMutableArray *)

layersCord slipPoints:(RealMatrix *)slip;
{ }

/**
 This method refines the mesh of slices. It starts by adding slices at

important locations such as where the slip surface crosses
stratigraphic boundaries. Picks the biggest slice and splits it until
it reaches the specified number of slices (noSlice).

 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the

stratigraphic elements in the cross section as polygons. Each
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the
failure surface. (x,y) row vectors.

 unsigned int noSlice: Number of slices for each slip surface.
 float tolSlicing: The smallest allowed slice width. Any smaller, and the

slice is removed from the slip surface.

 Output is the matrix defining the new slip surface with the added points.
*/
+(RealMatrix *)moreSlicesLayersCord:(NSMutableArray *)layersCord slipPoints:

(RealMatrix *)origSlipPoints noSlice:(unsigned int)noSlice tolSlicing:
40

Page 15 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

(float)tolSlicing;
{ }

#pragma mark - Problem Setup Functions

/**
 This function extracts the top and bottom boundaries of the cross section

from the nonEdgeLines matrix.

 Input Parameters:
 RealMatrix *nonEdgeLines: Matrix of (x,y) row vectors defining the lines

that make up the exterior boundary of the cross-section.

 Output is an NSArray of the top (ground) and bottom (bedrock) of the cross

section.
*/
+(NSArray *)grndBdrckExtractorNonEdgeLines:(RealMatrix *)nonEdgeLines;
{ }

/**
 This function examines the array of stratigraphic layers, and builds a

matrix of internal (edgeLines) and exterior (nonEdgeLines) edges.

 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the

stratigraphic elements in the cross section as polygons. Each
RealMatrix has (x,y) row vectors.

 Output is the array of edgeLines and nonEdgeLines matrices with (x,y) row

vectors.
*/
+(NSArray *)edgeAndNonEdgeLayersCord:(NSMutableArray *)layersCord;
{ }

#pragma mark - CoDE Methods

/**
 This function generates the lower and upper range of potential x values for

the entry and exit points, and the vertical positioning of each vertex
in the failure surface (sigma in the paper).

 Input Parameters:
 RealVector *xStartRange: Vector containing two values that define the range

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range
of acceptable exit points for a slip surface through the cross section.

 unsigned int noVertices: The number of vertices in the slip surface.

 Output is a RealVector of length noVertices and with two rows. The first

row is the lower bound of potential slip surfaces, and the second row
is the upper bound. This matrix is called "lu" for lower-upper in
other parts of the code.

*/
+(RealMatrix *)luGeneratorV2XStartRange:(RealVector *)xStartRange xEndRange:

(RealVector *)xEndRange noVertices:(unsigned int)noVertices;
41

Page 16 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

{ }

/**
 This function generates the x and y values for a slip surface based on the

upper boundary (ground), bottom boundary (bedrock), and the vector with
the beginning and end x values, then the sigma values in a vector
called pos.

 Input Parameters:
 RealMatrix *ground: Matrix of (x,y) row vectors defining the top boundary

of the cross section.
 RealMatrix *bedrock: Matrix of (x,y) row vectors defining the bottom

boundary of the cross section.
 RealVector *pos: Vector with the entry and exit x-values, and sigma values

between 0 and 1 that define each slip vertex's y-location between the
lower and upper boundary for each x value between the beginning and end
.

 Output is the RealMatrix of (x,y) row vectors of the generated slip surface

, after processing the pos vector.
*/
+(RealMatrix *)slipGeneratorNonConvexV2Ground:(RealMatrix *)ground bedrock:

(RealMatrix *)bedrock pos:(RealVector *)pos;
{ }

/**
 This function is the Composite Differential Evolution algorithm. See Yong

Wang 2011 and attached paper for info on its implementation.

 Input Parameters:
 unsigned int popsize: Population size of the slip surfaces to be evolved.
 unsigned int noSlice: Number of slices in each slip surface.
 unsigned int Niter: The number of successive iterations of evolution of the

population of slip surfaces.
 CGPoint axisPoint: CGPoint C struct with x and y parameters. Point about

which rotation is calculated.
 unsigned int noVertice: Number of initial vertices to generate for the slip

surfaces.
 float myPrecision: Decimal used to judge whether or not convergence has

been reached. Generally 0.001 to 0.00001.
 unsigned int maxIteration: Maximum number of iterations for each slip

surface FS evaluation.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of

the cross section.
 RealVector *xStartRange: Vector containing two values that define the range

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range
of acceptable exit points for a slip surface through the cross section.

 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
42

Page 17 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

 RealMatrix *materials: Matrix of material properties. Each material is a
column vector.

 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path
of the phreatic surface within the slope.

 float gammaWater: Specific weight of water. Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

. Each polygon is a RealMatrix with (x,y) row vector.
 NSObject *notified: Object to be notified on the progress of the CoDE

Engine.

 Output is an array of the slip surface, and the FS value for the lowest-FS

slip surface, in that order.
*/
+(NSArray *)CoDEEnginePopsize:(unsigned int)popsize noSlice:(unsigned int)

noSlice Niter:(unsigned int)Niter axisPoint:(CGPoint)axisPoint
noVertice:(unsigned int)noVertice myPrecision:(float)myPrecision
maxIteration:(unsigned int)maxIteration ground:(RealMatrix *)ground
bedrock:(RealMatrix *)bedrock xStartRange:(RealVector *)xStartRange
xEndRange:(RealVector *)xEndRange tolSlicing:(float)tolSlicing
nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)
edgeLines materials:(RealMatrix *)materials phreaticLine:(RealMatrix *)
phreaticLine gammaWater:(float)gammaWater layersCord:(NSMutableArray *)
layersCord notified:(NSObject *)notified;

{ }

#pragma mark - Main CoDE Function

/**
 This function is what gets called by the user interface to begin a

computation. All that is needed to begin a computation are these four
objects.

 Input Parameters:
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

. Each polygon is a RealMatrix with (x,y) row vector.
 RealVector *xStartRange: Vector containing two values that define the range

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range
of acceptable exit points for a slip surface through the cross section.

 NSObject *notified: Object to be notified on the progress of the CoDE
Engine. Generally the object that calls this function. The
updateCoDEProgress:(float)progress function is called with a value from
0 to 1 signifying the completion of the task.

 This function terminates without a direct output. It calls the

setSlipSurface:(RealMatrix *)slipSurface and setFS:(float)FS functions
on the notified object.

*/
+ (void)mainCoDE:(NSMutableArray *)layersCord materials:(RealMatrix *)

materials phreaticLine:(RealMatrix *)phreaticLine xStartRange:
(RealVector *)xStartRange xEndRange:(RealVector *)xEndRange nonCircular:
(BOOL)nonCircular notified:(NSObject *)notified;

{ }

43

Page 18 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

#pragma mark - Circular CoDE Implementation
/**
 This function is the Composite Differential Evolution algorithm. See Yong

Wang 2011 and attached paper for info on its implementation.

 Input Parameters:
 unsigned int popsize: Population size of the slip surfaces to be evolved.
 unsigned int noSlice: Number of slices in each slip surface.
 unsigned int Niter: The number of successive iterations of evolution of the

population of slip surfaces.
 CGPoint axisPoint: CGPoint C struct with x and y parameters. Point about

which rotation is calculated.
 unsigned int noVertice: Number of initial vertices to generate for the slip

surfaces.
 float myPrecision: Decimal used to judge whether or not convergence has

been reached. Generally 0.001 to 0.00001.
 unsigned int maxIteration: Maximum number of iterations for each slip

surface FS evaluation.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of

the cross section.
 RealVector *xStartRange: Vector containing two values that define the range

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range
of acceptable exit points for a slip surface through the cross section.

 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 float gammaWater: Specific weight of water. Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

. Each polygon is a RealMatrix with (x,y) row vector.
 NSObject *notified: Object to be notified on the progress of the CoDE

Engine.

 Output is an array of the slip surface, and the FS value for the lowest-FS

slip surface, in that order.
 */
+(NSArray *)CoDEEngineCircPopsize:(unsigned int)popsize noSlice:(unsigned

int)noSlice maxRFactor:(int)maxRFactor Niter:(unsigned int)Niter
axisPoint:(CGPoint)axisPoint myPrecision:(float)myPrecision
maxIteration:(unsigned int)maxIteration ground:(RealMatrix *)ground
bedrock:(RealMatrix *)bedrock xStartRange:(RealVector *)xStartRange
xEndRange:(RealVector *)xEndRange tolSlicing:(float)tolSlicing
nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)
edgeLines materials:(RealMatrix *)materials phreaticLine:(RealMatrix *)

44

Page 19 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

phreaticLine gammaWater:(float)gammaWater layersCord:(NSMutableArray *)
layersCord notified:(NSObject *)notified;

{ }

/**
 This function generates the lower and upper range of potential x values for

the entry and exit points, radius for the slip surface.

 Input Parameters:
 RealVector *xStartRange: Vector containing two values that define the range

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range
of acceptable exit points for a slip surface through the cross section.

 Output is a RealVector of length 3 and with two rows. The first row is the

lower bound of potential slip surfaces, and the second row is the upper
bound. This matrix is called "lu" for lower-upper in other parts of
the code.

 */
+(RealMatrix *)luGeneratorCircXStartRange:(RealVector *)xStartRange

xEndRange:(RealVector *)xEndRange;
{ }

/**
 This function generates the x and y values for a slip surface based on the

upper boundary (ground), bottom boundary (bedrock), and the vector with
the beginning and end x values, radius sigma in V.

 Input Parameters:
 int numSlice: number of slices to construct from the circular failure

surface.
 RealMatrix *ground: Matrix of (x,y) row vectors defining the top boundary

of the cross section.
 RealMatrix *bedrock: Matrix of (x,y) row vectors defining the bottom

boundary of the cross section.
 RealVector *V: Vector with the entry and exit x-values, and one sigma

values between 0 and 1 that defines the radius.

 Output is the RealMatrix of (x,y) row vectors of the generated slip surface

, after processing the pos vector.
 */
+(NSArray *)slipGeneratorCircNumSlice:(int)numSlice ground:(RealMatrix *)

ground bedrock:(RealMatrix *)bedrock maxRFactor:(float)maxRFactor V:
(RealVector *)V;

{ }

#pragma mark - Circular GLE Implementation

/**
 This function computes the circular moment-equilibrium FS value for the

slices given the parameters in the vector arguments. Computed
according to the GLE formulation in Fredlund and Krahn.

 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for

45

Page 20 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

the base of each slice. Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the

base of each slice. Units of m.
 RealVector *sN: Vector containing the normal force along the bottom of each

slice. Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of

each slice. Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle

of the soil along the base of each slice. Units of degrees.
 RealVector *sWeight: Vector containing weight of the material in each slice

. Units of kN.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line

defining the base of each slice. Units of degrees.

 Output is a float value for the circular moment-equilibrium FS.
 */
+(float)GLEfsMCircSliceCohesion:(RealVector *)sCohesion sliceLength:

(RealVector *)sLength sliceN:(RealVector *)sN sliceU:(RealVector *)sU
sliceFrictionAngle:(RealVector *)sFrictionAngle sliceWeight:(RealVector
*)sWeight sliceAlpha:(RealVector *)sAlpha;

{ }

/**
 This function finds the circular FS using the ordinary method of slices

(OMS), which is the first stage of the GLE solution.

 Input Parameters:
 RealVector *sliceWeight: Vector containing weights of each slice. Units of

kN.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the

base of each slice. Units of degrees.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of

each slice. Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that

defines the bottom of each slice. Units of m.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of

each slice at the base. Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each

slice. Units of kPa.

 Output is the FS as a float value.
 */
+(float)ordinaryFSBuilderv2CircSliceWeight:(RealVector *)sliceWeight

sliceAlpha:(RealVector *)sliceAlpha sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceFrictionAngle:
(RealVector *)sliceFrictionAngle sliceU:(RealVector *)sliceU;

{ }

/**
 This function finds the circular simplified Bishop FS for the given slip

surface.

 Input Parameters:
 float FSm: FS value for moment equilibrium as initial guess for this

function.
 float myPrecision: Decimal value defining the precision at which

46

Page 21 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

convergence has been reached. Generally 0.001 to 0.00001. Floats are
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice. Units of
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of
each slice. Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that
defines the bottom of each slice. Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the
base of each slice. Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each
slice. Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of
each slice at the base. Units of degrees.

 unsigned int maxIteration: Maximum number of iterations before the slip
surface is assumed to not converge.

 Output is an array of moment-equilibrium FS and N value associated in an

NSArray, in that order.
 */
+(NSArray *)gleBishopCircTrialF:(float)FSm myPrecision:(float)myPrecision

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function is the primary analyzer engine that finds the circular FS for

the failure surface specified in slipPoints. It uses the GLE to
determine Spencer FS.

 Input Parameters:
 RealMatrix *slipPoints: Matrix of (x,y) row vectors defining the current

slip surface.
 float gammaWater: Specific weight of water. Units of kN/m3.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip

surface is assumed to not converge.

 Output is the converged FS value for the given failure surface. If

convergence is not achieved, or the slip is not admissable, then 99999
is returned for FS. The CoDE engine then evolves the slip surface to
avoid inadmissable or non-computable surfaces.

 */
+(float)analyzerEngineCircSlipPoints:(RealMatrix *)slipPoints gammaWater:

47

Page 22 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

(float)gammaWater nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:
(RealMatrix *)edgeLines materials:(RealMatrix *)materials phreaticLine:
(RealMatrix *)phreaticLine myPrecision:(float)myPrecision maxIteration:
(unsigned int)maxIteration;

{ }

/**
 This function is the circular workhorse of the app. It takes an initial

population of "pos" vectors that define slip circles, then it generates
failure surfaces for those vectors, and evaluates the FS for them using
the GLE from Fredlund and Krahn. This is the single-threaded function.

 Input Parameters:
 RealMatrix *pos: Matrix of "pos" row vectors. The first two values in the

row are the entry and exit x values, then the rest of the values are
the vertical placement of the vertex between 0 and 1.

 unsigned int noSlice: This is the number of slices for each slip surface.
 int maxRFactor: This is the maximum radius multiplier that is allowed for

the circle.
 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip

surface is assumed to not converge.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of

the cross section.
 float gammaWater: Specific weight of water. Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

. Each polygon is a RealMatrix with (x,y) row vector.
 completionBlock: This is an Objective-C block to execute upon completion of

FS evaluations. This is here to retain the same method signature
between the single-threaded and multithreaded versions of this function
.

 Output is stored in the FSSlipPointsController singleton as an array of FS

values, and an array of RealMatrix slip points.
 */
+(void)FSsEvalCircPos:(RealMatrix *)pos axisPoint:(CGPoint)axisPoint

noSlice:(unsigned int)noSlice maxRFactor:(int)maxRFactor tolSlicing:
(float)tolSlicing nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:
(RealMatrix *)edgeLines materials:(RealMatrix *)materials phreaticLine:
(RealMatrix *)phreaticLine myPrecision:(float)myPrecision maxIteration:
(unsigned int)maxIteration ground:(RealMatrix *)ground bedrock:
(RealMatrix *)bedrock gammaWater:(float)gammaWater layersCord:
(NSMutableArray *)layersCord completionBlock:(void (^)())completionBlock
;

48

Page 23 of 23

MWCoDEEngine.m 5/9/12 3:41 PM

{ }

#pragma mark - Circular Slice Info Functions

/**
 This function builds the sliceInfo matrix which contains the relevant

parameters for each slice.

 Input Parameters:
 float gammaWater: Specific weight of water. Units of kN/m3.
 RealMatrix *slipPoints: Matrix representation of the slipPoints that define

the failure surface. Matrix of (x,y) row-vectors.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties. Each material is a

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path

of the phreatic surface within the slope.

 Output is the sliceInfo matrix that contains rows in this order:

sliceWeight, sliceAlpha, sliceCohesion, sliceWidth, sliceFrictionAngle,
sliceU.

 */
+(RealMatrix *)sliceInfoBuilderv2CircGammaWater:(float)gammaWater

slipPoints:(RealMatrix *)slipPoints nonEdgeLines:(RealMatrix *)
nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:(RealMatrix *)
materials phreaticLine:(RealMatrix *)phreaticLine;

{ }

/**
 This method refines the mesh of slices. It starts by adding slices at

important locations such as where the slip surface crosses
stratigraphic boundaries. Then it ensures that the slip surfaces have
vertices wherever strata above them contain discontinuities. Finally,
picks the biggest slice and splits it until it reaches the specified
number of slices (noSlice).

 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the

stratigraphic elements in the cross section as polygons. Each
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the
failure surface. (x,y) row vectors.

 float tolSlicing: The smallest allowed slice width. Any smaller, and the
slice is removed from the slip surface.

 Output is the matrix defining the new slip surface with the added points.
 */
+(RealMatrix *)moreSlicesCircLayersCord:(NSMutableArray *)layersCord

slipPoints:(RealMatrix *)origSlipPoints tolSlicing:(float)tolSlicing;
{ }

@end

49

