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1.1 Introduction 
The purpose of this project was to demonstrate the capabilities of mobile devices for advanced 
computation and analysis. bSLOPE, is a slope stability code adapted for iOS and for iPad using 
a new computational engine based on the work of Tabarroki (Tabarroki 2012), and Wang 
(2011).	   To this end the fundamentals of Limit Equilibrium slope stability analysis are reviewed 
first and then the computational algorithms are introduced as they are implemented in bSLOPE.  
This report has two objectives: (1) To acquaint the user with the process that is used in bSLOPE 
to analyze a particular slope in order to understand the internal structure of the algorithms and 
the limitations of the code; and (2) To give other researchers the information necessary to 
improve and extend bSLOPE’s open source computation engine. 
 
bSLOPE represents a new approach to slope stability analysis and engineering applications in 
general.  Traditional slope stability packages contain proprietary, closed-source computation 
engines, and have limited user interfaces.  These user interfaces often become the bottleneck in 
processing of slopes.  bSLOPE uses innovative touch interfaces and drafting systems that take 
advantage of new technology in graphical interfaces.  These interfaces allow the user of 
bSLOPE to rapidly formulate cross-sections and quickly perform the necessary analyses in the 
field.  bSLOPE focuses on the most common tasks that an engineer would need to do in order 
to verify a slope’s safety.  Its aim is to be simple and easy to use, while still using the most 
recent advances in numerical limit equilibrium algorithms.  bSLOPE is not intended to be a 
replacement for many commercially accepted codes which have more analysis options.  It is 
intended to complement these applications with a field component. 

1.2 Limit Equilibrium Method 
The limit equilibrium method of analysis for static slopes is still the most widely used tool to 
analyze the stability of a given soil slope.  It considers a soil continuum of different strata, and 
given a particular failure surface in the form of lines or arcs, a “Factor of Safety” is found through 
the application of force and/or moment equilibrium.  The factor of safety is defined as the ratio of 
the resisting force or moment to the driving force or moment.  So if a particular failure surface 
has a Factor of Safety (FS) of 1, then it is at the “limit” of equilibrium assumptions.  A Factor of 
Safety less than 1 means that the driving forces are greater than the resisting forces and the 
slope will fail either in rotation, translation, or a combination thereof. 
 
In order to take an arbitrary geometry and automate the procedure of calculating a FS for a 
particular failure surface geometry, it is necessary to divide the sliding mass into sections.  
There are a variety of methods for performing this task; however, the most common method is 
to divide the mass into vertical slices.  This is called the method of slices.  The equilibrium 
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conditions are applied to each slice and contributions to either driving or resisting force or 
moment are computed.  The sum of all driving and resisting moments and forces are then used 
to compute the overall Factor of Safety for the discretized sliding mass. 
 
Traditionally, the failure surfaces were defined as circular.  This can be an accurate assumption 
in many homogenous soils; however, it is not true in most real world situations.  Non-circular 
failure surfaces are much more likely in heterogeneous soils or where geological units form a 
complex geometry. 
 
There are several methods for computation of FS from a particular sliced sliding mass.  Table 1, 
below, summarizes the methods most commonly used in practice and gives an overview of their 
use cases and assumptions. 
 
Method	   Limitations,	  Assumptions,	  and	  Equilibrium	  Conditions	  Satisfied	  
Ordinary	  method	  of	  slices	  

(Fellenius	  1927)	  
Factors	  of	  safety	  low	  –	  very	  inaccurate	  for	  flat	  slopes	  with	  high	  pore	  pressures;	  only	  for	  circular	  

slip	  surfaces;	  assumes	  that	  normal	  force	  on	  the	  base	  of	  each	  slice	  is	  W	  cos	  α;	  one	  equation	  
(moment	  equilibrium	  of	  entire	  mass),	  one	  unknown	  (factor	  of	  safety)	  

Bishop’s	  modified	  
method	  (Bishop	  1955)	  

Accurate	  method;	  only	  for	  circular	  slip	  surfaces;	  satisfies	  vertical	  equilibrium	  and	  overall	  moment	  
equilibrium;	  assumes	  side	  forces	  on	  slices	  are	  horizontal;	  N+1	  equations	  and	  unknowns	  

Force	  equilibrium	  
methods	  

Satisfy	  force	  equilibrium;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assume	  side	  force	  inclinations,	  
which	  may	  be	  the	  same	  for	  all	  slices	  or	  may	  vary	  from	  slice	  to	  slice;	  small	  side	  force	  
inclinations	  result	  in	  values	  of	  F	  less	  than	  calculated	  using	  methods	  that	  satisfy	  all	  conditions	  
of	  equilibrium;	  large	  inclinations	  result	  in	  values	  of	  F	  higher	  than	  calculated	  using	  methods	  
that	  satisfy	  all	  conditions	  of	  equilibrium;	  2N	  equations	  and	  unknowns	  

Janbu’s	  simplified	  
method	  (Janbu	  1968)	  

Force	  equilibrium	  method;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  side	  forces	  are	  
horizontal	  (same	  for	  all	  slices);	  factors	  of	  safety	  are	  usually	  considerably	  lower	  than	  calculated	  
using	  methods	  that	  satisfy	  all	  conditions	  of	  equilibrium;	  2N	  equations	  and	  unknowns	  

Modified	  Swedish	  
method	  (US	  Army	  
Corps	  of	  Engineers	  
1970)	  

Force	  Equilibrium	  method,	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  side	  force	  inclinations	  
are	  equal	  to	  the	  inclination	  of	  the	  slope	  (same	  for	  all	  slices);	  factors	  of	  safety	  are	  often	  
considerably	  higher	  than	  calculated	  using	  methods	  that	  satisfy	  all	  conditions	  of	  equilibrium;	  
2N	  equations	  and	  unknowns	  

Lowe	  and	  Karafiath’s	  
method	  (Lowe	  and	  
Karafiath	  1960)	  

Generally	  most	  accurate	  of	  the	  force	  equilibrium	  methods;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  
assumes	  side	  force	  inclinations	  are	  average	  of	  slope	  surface	  and	  slip	  surface	  (varying	  from	  slice	  
to	  slice);	  satisfies	  vertical	  and	  horizontal	  force	  equilibrium;	  2N	  equations	  and	  unknowns	  

Janbu’s	  generalized	  
procedure	  of	  slices	  
(Janbu	  1968)	  

Satisfies	  all	  conditions	  of	  equilibrium;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  heights	  of	  
side	  forces	  above	  base	  of	  slice	  (varying	  from	  slice	  to	  slice);	  more	  frequent	  numerical	  
convergence	  problems	  than	  some	  other	  methods;	  accurate	  method;	  3N	  equations	  and	  
unknowns	  

Spencer’s	  Method	  
(Spencer	  1967)	  

Satisfies	  all	  conditions	  of	  equilibrium;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  that	  
inclinations	  of	  side	  forces	  are	  the	  same	  for	  every	  slice;	  side	  force	  inclination	  is	  calculated	  in	  the	  
process	  of	  solution	  so	  that	  all	  conditions	  of	  equilibrium	  are	  satisfied;	  accurate	  method;	  3N	  
equations	  and	  unknowns	  

Morgensertn	  and	  Price’s	  
method	  (Morgenstern	  
and	  Price	  1965)	  

Satisfies	  all	  conditions	  of	  equilibrium;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  that	  
inclinations	  of	  side	  forces	  follow	  prescribed	  pattern,	  called	  f(x);	  side	  force	  inclinations	  can	  be	  
the	  same	  or	  can	  vary	  from	  slice	  to	  slice;	  side	  force	  inclinations	  are	  calculated	  in	  the	  process	  of	  
solution	  so	  that	  all	  conditions	  of	  equilibrium	  are	  satisfied;	  accurate	  method;	  3N	  equations	  and	  
unknowns	  

Sarma’s	  method	  (Sarma	  
1973)	  

Satisfies	  all	  conditions	  of	  equilibrium;	  applicable	  to	  any	  shape	  of	  slip	  surface;	  assumes	  that	  
magnitudes	  of	  vertical	  side	  forces	  follow	  prescribed	  patterns;	  calculates	  horizontal	  
acceleration	  for	  barely	  stable	  equilibrium;	  by	  prefactoring	  strengths	  and	  iterating	  to	  find	  the	  
value	  of	  the	  prefactor	  that	  results	  in	  zero	  horizontal	  acceleration	  for	  barely	  stable	  equilibrium,	  
the	  value	  of	  the	  conventional	  factor	  of	  safety	  can	  be	  determined;	  3N	  equations,	  3N	  unknowns.	  

Table 1: List of FS evaluation methods, after Duncan (1996) 
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Most methods of computing the FS for a failure surface can be calculated through a common 
formulation published by Fredlund and Krahn (1977) called the General Limit Equilibrium 
method (GLE).  The GLE encompasses the Simplified Bishop, Spencer’s, Janbu’s simplified, 
Janbu’s rigorous, and the Morgenstern-Price methods.  This approach is used in bSLOPE as 
the basis for its FS calculations.  This allows bSLOPE to rapidly compute the FS value for many 
different methods using essentially the same algorithm. 

1.2.1 Spencer Slice Formulation 
In order to understand how the algorithm works, we must first understand how the FS 
computation is executed within the algorithm.   

 
Fig. 1.  Forces acting for the method of slices applied to a composite sliding surface. After Fredlund and Krahn (1977) 
 
The algorithm specifies the variables associated with each slice using the following notation.  
bSLOPE parameter names follow in blue according to Tabarroki’s (Tabarroki 2012) original 
naming scheme. 
 
𝑊   = Total weight of the slice of width b and height h. (sliceWeight) 
𝑃     = Total normal force on the base of the slice over a length l. (sliceNm and sliceNf for 

moment and force equilibrium, respectively) 
𝑆!   = Shear force mobilized on the base of the slice.  It is a percentage of the shear strength 

as defined by the Mohr-Coulomb equation.  That is, 𝑆! = 𝑙  {𝑐! + !
!
− 𝑢 tan𝜙!}/𝐹𝑆 

where 𝑐! =  effective cohesion parameter, 𝜙! =  effective angle of internal friction, 𝐹𝑆 =
  factor of safety, and 𝑢 =  pore-water pressure. 

𝑅     = Radius or the moment arm associated with the mobilized shear force 𝑆!. (sliceR) 
𝑓     = Perpendicular offset of the normal force from the center of rotation. (slicef) 
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𝑥     = Horizontal distance from the slice to the center of rotation. (slicex) 
𝛽     = Base length of each slice. (sliceLength) 
𝛼     = Angle between the tangent to the center of the base of each slice and the horizontal. 

(sliceAlpha) 
𝐸     = Horizontal interslice forces. (E) 
𝑋     = Vertical interslice shear forces.  Subscripts L and R define the left and right sides of 

the slice, respectively. (sliceXr_Xl) 
𝑐!   = Effective cohesion. (sliceCohesion) 
𝜙!   = Effective angle of internal friction. (sliceFrictionAngle) 
𝑢       = Pore-water pressure. (sliceU) 
𝐹𝑆   = Factor of Safety.  𝐹𝑆! is for moment equilibrium.  𝐹𝑆! is for force equilibrium. 

 
By writing moment and force equilibrium for Fig. 1, FS with respect to moment and force 
equilibrium is as follows: 
 

𝐹𝑆! =   
∑ 𝑐!𝛽𝑅 + 𝑁 − 𝑢𝛽 𝑅 tan𝜙!

𝑊𝑥 − ∑𝑁𝑓
 

  

𝐹𝑆! =   
∑(𝑐!𝛽 cos𝛼 + 𝑁 − 𝑢𝛽 tan𝜙! cos𝛼)

∑(𝑁 sin 𝛼)
 

where N at the base of each slice is calculated from: 
 

𝑁 =
𝑊 − 𝑋! − 𝑋! − 𝑐

!𝛽 sin 𝛼 + 𝑢𝛽 sin 𝛼 tan𝜙!
𝐹𝑆

cos𝛼 + sin 𝛼 tan𝜙
!

𝐹𝑆

 

 
These equations are quite powerful because they encompass most of the different slope 
stability methods in one unifying set of relationships.  Typically, this approach is used in 
numerical codes to determine the FS for a given failure surface. 

1.2.2 Criticality 
In a given slope, it is necessary to determine which subset of the infinitely possible failure 
surfaces is “critical”.  Critical failure surfaces are those that have low FS (generally less than or 
equal to 1), and are large in size or in a sensitive location. 

 1.2.3 Circular vs. Non-Circular 
Circular failure surfaces are a subset of what are called “non-circular” failure surfaces in slope 
stability analyses. Many of the early algorithms developed for obtaining a FS value assumed 
that critical failure surfaces were roughly circular in shape.  This is a fairly good assumption for a 
very small subset of real world problems.  Circular searches should be used as a starting point 
for any real-world problem.  They can be done rapidly with high levels of confidence in the 
results.  Non-circular searches are far more complex and are prone to getting caught in local 
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minima.  Therefore, non-circular searches should be attempted very carefully.  The geometry of 
the problem may prevent convergence.  Engineering judgment is required in selecting entry or 
exit regions that will guide the slip surface to areas that are believed to be most susceptible to 
failure.  
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1.3 Search for Critical Failure Surface 

1.3.1 Methodology 
In general, the search for the critical failure surface in a given slope is a problem of 
minimization.  In slope stability analysis, we are attempting to find the failure surface with the 
minimum FS that is also meaningful in the real-world context.  We do not want the search to get 
caught on infinitesimally small failures, or generate kinematically inadmissible slip surfaces. 
 
The objective function in this case is the GLE, the inputs are the X and Y coordinates of the slip 
surfaces, and the output is the FS.  By intelligently analyzing the output of the objective function 
after each iteration, it is possible to modify the inputs (in this case, the slip surface) to attempt to 
attain a lower-FS failure surface. 

1.3.2 Circular Search 
If the failure surface is limited to circular geometry then the optimization problem becomes very 
simple.  We must only consider center, radii, and the boundaries of the slope.  This process has 
been implemented in many codes as a “grid-and-radius” search in which the user specifies a 
grid of centers and a range of radii to test.  The FS values from the permutations of these two 
parameters are computed, and the lowest value of FS is assumed to be from the critical surface.  
A “heat map” of FS can then be generated.  bSLOPE implements a very simple evolutionary 
algorithm that varies three parameters to locate the minimum, entry and exit location, and the 
radius of the circle. 

1.3.3 Non-circular Search 
If failure surfaces are not constrained to be circular, then the search for criticality becomes much 
more complex.  Traditionally, engineers would have to use their experience to define several 
predicted non-circular failure modes based on the geology of the slope.  These would be input 
into the computer application, which would then calculate the FS for these special cases.  This 
limited search requires a great deal of work and a trial-and-error approach, which can easily 
lead to problems if important failure surfaces are not considered. 
 
The task of the non-circular search algorithm therefore is to find the critical, kinematically 
admissible failure surface within a user-defined region.  There are many approaches to this 
problem.  The first algorithms developed were deterministic in nature however they have 
become highly complex to deal with the many different types of failures and situations.  Other 
search algorithms have been developed based on advanced evolutionary or statistical methods 
that automatically optimize to the correct solution.  These methods have the benefit of being 
easy to understand in theory, and if managed properly, can match deterministic approaches to 
the problem in both speed and accuracy.   
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Dynamic Programming 
Bellman (1957) originally created a mathematical minimization technique called dynamic 
programming.  The algorithm was first applied to slope stability by Baker in 1980.  The method 
is very complex compared to many of the other optimization methods, and requires many more 
parameters to be specified for the soil strata, such as Poisson’s ratio and elastic modulus.  This 
introduces additional uncertainty in the results, and this method has not been used widely since 
its introduction. 

Conjugate-Gradient 
Arai and Tagyo (1985) used the conjugate gradient method, which is probably the most 
prominent method of solving sparse systems of linear equations.  It is often used in finite 
element codes, and works well here, though more efficient algorithms have been proposed. 

Simplex 
A simplex is a geometrical figure in a N-dimensional space consisting of N+1 vertices and all 
their interconnecting line segments (Bardet and Kapuskar 1989).  In the case of the N-
dimensional slip surface with N+1 vertices, the simplex is used along with reflection, reflection 
plus expansion, local contraction, and global contraction to generate successively lower FS 
simplex geometries. 

Monte Carlo Technique 
Monte Carlo minimization techniques operate through random search for a function with several 
variables.  The first implementations of this technique in the slope stability context were 
inefficient and required a tremendous number of iterations before the critical failure surface 
could be found.  To address this constraint, Greco (1996) presented the first “random walk” 
Monte Carlo method.  Through intelligent generation of kinematically admissible slip surfaces for 
each iteration of the algorithm, Greco’s algorithm is comparable in speed to many deterministic 
algorithms. 

Composite Differential Evolution (CoDE) 
This method was proposed as a general optimization algorithm by Wang (2011).  It is a highly 
efficient variant of the Differential Evolution process whereby an initial population is modified 
through mutation, crossover, and selection to produce succeeding generations closer to the 
global optimum.  This general optimization algorithm was competitive with other general 
methods (Wang 2011). Tabarroki (Tabarroki 2012) used MATLAB to implement a version of this 
optimization technique for the X and Y coordinates of the non-circular slip surface and was able 
to create the high-performance solution that is implemented in bSLOPE.  
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2.1 bSLOPE Algorithm 

2.1.1 Overview of Computation Engine 
The computation engine for bSLOPE was ported from an implementation of the Composite 
Differential Evolution algorithm originally written by Tabarroki (Tabarroki 2012).   The majority of 
the work in the creation of bSLOPE was in translating and optimizing this MATLAB code to the 
high-level native programming language Objective-C.  Through extensive memory analysis and 
refactoring many of the individual functions to utilize modern multi-cored discrete graphics and 
CPUs, bSLOPE has been able to attain a 5-10x increase in speed over the MATLAB 
implementation on the same hardware.    
 
A major problem for the industry has been the closed-source nature of the existing computation 
platforms.  Codes like SLOPE/W (Geo-Slope 2001) use methods of analysis that are well-
established and rigorously defined, yet they are closed-source and proprietary, which means 
that their improvement and optimization for the entire industry depends on the authors of the 
code only.  Consequently, slope stability research routinely entails either “reinventing the wheel” 
by writing a limit equilibrium code from scratch, or using an outdated core written in the 70’s.  
bSLOPE’s open computational engine will be available for all researchers to use and extend 
moving forward. 

Objective-C 
Objective-C is a relatively widely used language that has many advantages for high-speed 
scientific computing on limited resources.  It is a superset of the low-level C language, which 
means that anything written in C will also run in Objective-C.  Objective-C however also has 
high-level Object-oriented systems in place which give it great flexibility in its memory 
management. 
 
Its primary advantage over other high-level languages such as Ruby or Java is its memory 
management and speed.  Objective-C is a compiled language, which means that the resulting 
compiled binary package runs directly on the processor of the system without an interpreter or 
virtual machine layer between the program and the hardware.  This allows it to use intelligent 
memory allocations and modifiers within objective wrappers without the heavy overhead of 
automatic “garbage” disposal in Ruby or Java. 
 
C++ is another logical choice for bSLOPE; however, its unintuitive syntax would be challenging 
for many researchers to use, especially if they are used to MATLAB.  Objective-C uses similar 
syntax to many other high-level programming languages such as Ruby or Java, and contains 
many of the niceties of recent advancements in computer science.   

MATLAB 
MATLAB is an interpreted language with dynamic, inferenced types.  It is a high-level language 
with nice syntax for performing matrix operations, and has many high-performance matrix math 
libraries built-in.  However, when building a large custom code, it has limitations.  The interpreter 
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is quite good at optimizing matrix computations, but can never be as fast as a compiled code 
due to the large overhead associated with the interpretation layer and garbage collector.  The 
interpretation layer of MATLAB also has problems with I/O operations to memory buffers where 
its variables are stored.  These I/O operations often take much more time than the actual 
computations do.  C allows the user to pass variables as pointers to locations in memory and 
does not necessitate the duplication of that memory to work on a particular variable. 
 
MATLAB also uses high-precision computing for many of its core libraries, which makes 
computations much slower than single floating-point precision calculations.  In rewriting the 
code, C float (single precision) primitives were used which are more than accurate enough for 
slope stability calculations.  C floats retain accuracy out to about the 6th decimal place, which is 
sufficient for our purposes.  
 
The primary challenge in translating the code from MATLAB was replicating the functionality of 
many of MATLAB’s built-in vector and matrix math functions.  Custom implementations for these 
functions were written in Obj-C. 

Functional Approach 
There are many application structure paradigms that can be implemented to make a body of 
code more easily understandable and maintainable.  The two primary approaches currently 
popular are Object Oriented applications and functional applications.  Of course, most real-world 
applications are a mix of the two, they generally fall somewhere on the spectrum closer to one 
side or the other.  bSLOPE’s computation engine was built with a functional approach.  This 
means that the stages of computation are broken up into functional components and these 
components have strict rules for input and output.  Generally, functions with pointer arguments 
will not modify the memory of parent functions and they will allocate and free their own 
workspaces in memory.   
 
This has many benefits from a research perspective.  Each individual function can be replaced 
without destroying the functionality of the entire application, and refactoring becomes much 
simpler.  Performance enhancements from minute changes in particular functions can be 
measured and calibrated simply.  Of course, there are many object-oriented parts of bSLOPE 
as well, starting with its math library which uses objects to represent abstract data types.  
Objective-C has a great facility for easing the use of either application paradigm. 

SMUGMath 
The SMUGMath library was used as a base and heavily extended to mimic these functionalities 
in Objective-C.   At the basis of this library is the RealVector class.  This class acts as an 
Objective-C wrapper for a C float array.  They allow C float arrays to be created and destroyed 
through retain counting.  RealVectors use the virtual Digital Signals Processing library from 
Apple (vDSP) to perform in-place mathematical transformations on floats.  This reduces 
memory duplication and allows bSLOPE to use the multicored discrete graphics chips in Apple’s 
devices. 
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For matrix operations, bSLOPE uses the RealMatrix class to represent the matrix data.  A 
RealMatrix is a wrapper for a RealVector with a specific mapping from elements in the 2D matrix 
to specific elements in the vector.  Processor intensive matrix operations like sorting and 
searching are done with the vDSP library, which has highly optimized implementations. 

Multithreading 
MATLAB has some great multithreading tools that make it incredibly simple to implement a 
parallel algorithm for multi-core processors.  Tabarroki (Tabarroki 2012) used the “parfor” 
function to parallelize FS evaluations for each stage of the evolutionary algorithm.  There is no 
simple way to duplicate this functionality in Objective-C.  The performance gains associated with 
splitting individual threads is often elusive if not done in the proper way.  The overhead 
associated with creating and running a new thread is not small.  Also, deciding the optimal 
number and execution order of threads to ensure that resources are not wasted and 
performance is negatively impacted is difficult. 
 
Objective C as implemented in iOS provides a multithreading library that is not quite as simple 
as the “parfor” command in MATLAB.  It is called Grand Central Dispatch, and optimizes the 
execution order and number of concurrent processes for the current memory and processor 
demands.  It creates and manages C threads, and allows applications to queue code in the form 
of Objective-C “blocks”.  Blocks are compiled pieces of code that are similar to standard C 
functions, but can be passed as part of other functions’ variable scope at runtime. 
 
Grand Central Dispatch manages queues of blocks that are executed on the correct number of 
threads for the current runtime environment to assure the fastest execution.  bSLOPE mimics 
the “parfor” functionality by queuing blocks that evaluate each individual FS evaluation.  These 
blocks then queue completion blocks on the main thread that insert their results into a 
synchronous data source held in a singleton data object.  Once all FS evaluation blocks have 
been processed, the last item in the queue begins the next stage of post-processing these FS 
and trial vector selection. 
 
Thread safety is one of the biggest challenges faced by creators of multithreaded code.  The 
functional approach to bSLOPE makes this issue relatively simple to deal with.  Each function is 
passed its object parameters as pointers to locations in memory where the objects are located 
and all primitives are passed as values.  Functions are not allowed to modify the objects passed 
in and are responsible for allocating and freeing the memory required to perform their 
operations.  The only operation that is not thread-safe by default is the access to the passed in 
objects.  This is solved by placing @synchronized blocks around the accessors, which requires 
successive requests to wait in a queue in order to read the memory. 
 
Most of the mobile processors that bSLOPE is designed for are single-core ARM chips, and so 
are not able to see any performance gains by implementing this code.  In fact, this approach will 
tremendously slow down the code because of the management overhead associated with the 
creation and destruction of thread processes and memory spaces.  The third-generation iPad 
does have a dual core A5X chip, but in our testing the performance gains from multithreading 
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the code on this small processor were nonexistent.  By default, bSLOPE’s computation engine 
has this section of code disabled until quad-core CPUs are introduced for iPad. 
 
Although multithreaded computation is disabled for the CPU, discrete graphics chips are used 
for the vector computation when present in the device.  In the third-generation iPad, a quad-core 
discrete graphics chip is in place that performs matrix math at high speed through Apple’s vDSP 
library.  This allows dramatic increases in speed when compared to the same computations on 
the CPU. 
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2.2 Implementation 

2.2.1 Problem Setup 
The algorithm’s initial inputs are the stratigraphic layers and their associated properties.  Each 
layer of soil is represented by a polygon, which is defined as a matrix of X and Y coordinates.  
The polygon must be closed, which means that the first and last coordinate must be equal to 
each other. 
 
The global boundaries for the cross-section are identified by building an index of interior and 
exterior lines that define soil regions.  The internal lines (edgeLines) are within the cross-
section, and the exterior boundaries (nonEdgeLines) define the shape of the overall cross 
section. 

 

Fig. 2.  edgeLines and nonEdgeLines 

 
Material properties for each of the stratigraphic layers are stored in the “materials” matrix.  The 
matrix has a column for each of the materials present in the slope.  The columns are specified 
as specific weight, cohesion, friction angle, and a fourth term that reserves space for future 
additions to the code. 
 

2.2.2 FS Evaluation 
The implementation of FS evaluation in bSLOPE uses the GLE to compute FS value.  What 
follows is a pseudocode approximation of what the MATLAB and Objective-C computation 
engines do.  These methods have problems in certain situations with convergence.  To ensure 
that no infinite loops are created, a maximum iteration number is specified, and if any of these 
methods exceed that iteration cap, then the slip surface is assumed to be kinematically 
inadmissible or otherwise problematic.  These slip surfaces are assigned a FS value of 99999, 
and the CoDE engine automatically selects against them. 
 
Inputs:	  gammaWater	  =	  unit	  weight	  of	  water	  (float);	  

slipPoints	  =	  matrix	  of	  (x,y)	  rows	  defining	  vertices	  of	  slip	  surface	  (RealMatrix);	  
axisPoint	  =	  axis	  for	  non-‐circular	  surface,	  used	  to	  compute	  slicef	  (CGPoint);	  
nonEdgeLines	  =	  matrix	  of	  (x,y)	  rows	  defining	  exterior	  boundary	  for	  slope	  (RealMatrix);	  
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edgeLines	  =	  matrix	  of	  (x,y)	  rows	  defining	  interior	  regional	  boundaries	  (RealMatrix);	  
materials	  =	  matrix	  of	  specific	  weight,	  cohesion,	  and	  friction	  angle	  for	  each	  material	  (RealMatrix);	  
phreaticLine	  =	  matrix	  of	  (x,y)	  rows	  defining	  phreatic	  surface	  within	  cross-‐section	  (RealMatrix);	  
myPrecision	  =	  decimal	  representation	  of	  the	  highest	  accuracy	  required,	  generally	  0.00001	  (float);	  
maxIteration	  =	  maximum	  number	  of	  iterations	  for	  FS	  computation	  (unsigned	  int);	  
	  
(1) Use	  gammaWater,	  slipPoints,	  nonEdgeLines,	  edgeLines,	  materials,	  phreaticLine,	  and	  axisPoint	  to	  find:	  

• W	  =	  sliceWeight	  =	  row	  vector	  of	  total	  weights	  for	  each	  slice;	  
• 𝛼	  =	  sliceAlpha	  =	  row	  vector	  of	  alpha	  angle	  (see	  Fig	  1.);	  
• 𝑐′	  =	  sliceCohesion	  =	  row	  vector	  of	  cohesion	  value	  in	  the	  material	  at	  the	  base	  of	  the	  slice;	  
• w	  =	  sliceWidth	  =	  row	  vector	  of	  slice	  widths;	  
• 𝜙′	  =	  sliceFrictionAngle	  =	  row	  vector	  of	  friction	  angle	  value	  in	  the	  material	  at	  the	  base	  of	  the	  slice;	  
• u	  =	  sliceU	  =	  row	  vector	  of	  suction	  forces	  along	  the	  base	  of	  the	  slice;	  
• 𝑓	  =	  slicef	  =	  row	  vector	  of	  perpendicular	  offset	  of	  the	  normal	  force	  from	  the	  center	  of	  moments;	  
• 𝑅	  =	  sliceR	  =	  row	  vector	  of	  moment	  arm	  associated	  with	  the	  mobilized	  shar	  force;	  
• x	  =	  slicex	  =	  row	  vector	  of	  horizontal	  distance	  from	  the	  centerline	  of	  each	  slice	  to	  the	  center	  of	  moments;	  
• 𝛽	  =	  sliceLength	  =	  row	  vector	  of	  the	  length	  of	  the	  line	  that	  defines	  the	  bottom	  of	  the	  slice;	  

(2) Interslice	  normal	  and	  shear	  forces	  are	  set	  to	  zero,	  and	  initial	  FSm	  is	  computed:	  

• 𝐹𝑆!,!"# =
∑ !!!"! ! !"# ! !!" ! !"#(!!)

∑ ! !"#!"
	  //Equivalent	  to	  OMS	  FS	  

(3) Lambda	  (𝜆)	  is	  set	  to	  zero,	  so	  interslice	  shear	  forces	  and	  (𝑋! − 𝑋!)	  are	  zero;	  
(4) Choose	  initial	  𝐹𝑆 = 𝐹𝑆!,!"#×1.2	  as	  guessed	  FS;	  
(5) while	   𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑  𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	  

• Calculate	  N:	  

i. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	  

• Calculate	  𝐹𝑆!	  from	  this	  N	  value	  using:	  

i. 𝐹𝑆! =   ∑ !!!"! ! !"# ! !!" ! !"#(!!)
∑!"!∑!"

;	  

(6) 	  end	  while	  //Once	  converged,	  𝐹𝑆!	  is	  equivalent	  to	  Bishop’s	  Simplified	  FS;	  
(7) while	   𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑  𝐹𝑆 >   𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	  

• Calculate	  N:	  

i. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	  

• Calculate	  𝐹𝑆!	  from	  this	  N	  value	  using:	  

i. 𝐹𝑆! =   
∑(!!! !"#!! !!!" !"#!! !"#!)

∑(! !"#!)
;	  

(8) end	  while	  //Once	  converged,	  𝐹𝑆!	  is	  equivalent	  to	  Janbu’s	  Simplified	  FS;	  
(9) Use	  𝐹𝑆!	  and	  N	  from	  stage	  (5)	  to	  calculate:	  

• 𝐸! − 𝐸! =   − !!!!!" !"#!! !"#!
!"

+ 𝑁   − !"#!! !"#!
!"

+ sin𝛼 ;	  

(10) Now	  use	  (𝐸! − 𝐸!)	  and	  an	  initial	  𝜆 = 0.33	  to	  compute:	  
• 𝑋! − 𝑋! = 𝐸! − 𝐸! 𝜆𝑓(𝑥);	  

(11) while	   𝐹𝑆! − 𝐹𝑆! > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	  
• while	   𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑  𝐹𝑆 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	  

i. Calculate	  N:	  

1. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	  

ii. Calculate	  𝐹𝑆!	  from	  this	  N	  value	  using:	  
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1. 𝐹𝑆! =   ∑ !!!"! ! !"# ! !!" ! !"#(!!)
∑!"!∑!"

;	  

• end	  while	  	  
• while	   𝐹𝑆! − 𝑔𝑢𝑒𝑠𝑠𝑒𝑑  𝐹𝑆 >   𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	  

i. Calculate	  N:	  

1. 𝑁 =
!! !!!!! !!

!! !"#!!!" !"#! !"#!!

!"

!"#!!!"#! !"#!
!

!"

;	  

ii. Calculate	  𝐹𝑆!	  from	  this	  N	  value	  using:	  

1. 𝐹𝑆! =   
∑(!!! !"#!! !!!" !"#!! !"#!)

∑(! !"#!)
;	  

• end	  while	  
• Use	  𝐹𝑆!	  and	  N	  from	  stage	  (5)	  to	  calculate:	  

i. 𝐸! − 𝐸! =   − !!!!!" !"#!! !"#!
!"

+ 𝑁   − !"#!! !"#!
!"

+ sin𝛼 ;	  

• Use	  Newton-‐Raphson	  method	  to	  compute	  𝜆.	  	  Use	  this	  and	  (𝐸! − 𝐸!)	  to	  compute:	  
i. 𝑋! − 𝑋! = 𝐸! − 𝐸! 𝜆𝑓(𝑥);	  

(12) end	  while	  //Once	  converged,	  the	  joint	  FS	  value	  here	  is	  equal	  to	  either	  the	  Morgenstern-‐Price	  or	  the	  Spencer’s	  
FS	  value	  depending	  on	  the	  function	  𝑓(𝑥);	  

Output:	  FS	  value	  for	  the	  given	  slip	  surface;	  

Fig. 3. Pseudocode for FS evaluation 

2.2.3 Smooth Slip Generation 
In order to ensure that randomly generated slip surfaces are smooth and kinematically 
admissible, bSLOPE uses the approach specified by Cheng (2003).  Consider Figure 5, and the 
associated pseudocode to generate the slip surface.  This method naturally produces smooth, 
concave-up slip surfaces for the initial population. 

 

Fig. 4. Generation of non-circular slip surface (from M. Tabarroki, personal communication) 
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Input:	  ground	  =	  matrix	  representation	  of	  path	  defining	  the	  ground	  surface	  –	  composed	  of	  (x,y)	  row	  vectors;	  

bedrock	  =	  matrix	  representation	  of	  path	  defining	  “bedrock”,	  a	  lower	  boundary	  for	  our	  search	  –	  composed	  of	  (x,y)	  row	  
vectors;	  

xStartRange	  =	  row	  vector	  with	  an	  upper	  and	  lower	  X	  bound	  for	  the	  start	  range	  of	  the	  slip	  in	  the	  ground	  surface;	  

xEndRange	  =	  row	  vector	  with	  upper	  and	  lower	  X	  bound	  for	  the	  end	  range	  of	  the	  slip	  in	  the	  ground	  surface;	  

(1) Generate	  a	  random	  𝑥!	  and	  𝑥!	  within	  the	  xStartRange	  and	  xEndRange,	  respectively;	  
(2) Generate	  𝑥!	  through	  𝑥!!!	  by	  uniformly	  dividing	  the	  horizontal	  distance	  between	  𝑥!	  and	  𝑥!;	  
(3) 𝑌!"#	  and	  𝑌!"#	  are	  calculated	  for	  𝑥!!!;	  
(4) 𝜎!!!	  is	  randomly	  generated	  between	  0	  and	  1;	  
(5) 𝑦!!! = 𝜎!!! 𝑌!"# − 𝑌!"# +   𝑌!"#	  ;	  
(6) Steps	  3-‐5	  are	  repeated	  for	  each	  successive	  x-‐coordinate	  back	  towards	  𝑥!;	  

Output:	  matrix	  of	  [𝑥!, 𝑥!,𝜎!,…   𝜎!!!]	  defining	  the	  slip;	  

[G	  =	  generation	  number;	  FES	  =	  number	  of	  function	  evaluations;	  F	  &	  Cr	  =	  control	  parameter	  settings]	  

Fig. 5.  Pseudocode of general CoDE Algorithm (from Wang et al. 2011) 

2.2.4 CoDE Implementation 
The core of bSLOPE’s computation engine is the CoDE algorithm.  This algorithm was originally 
published to minimize vectors. In essence, the algorithm can be summed up as follows: An 
initial population of slip surfaces randomly generated with Cheng’s algorithm is given to the 
algorithm.  Successive generations of the slip surfaces are evolved to find the global optimum.  
At each generation, three trial vectors are generated for each member of the population.  The 
lowest-FS “child” of each current vector is selected for further mutation and selection.  The use 
of three mutation strategies for every member of the population makes the algorithm resilient, 
and not easily captured in local minima.  What follows is a brief pseudocode for how the 
algorithm proceeds. 
	  

Input:	  NP:	  the	  number	  of	  individuals	  at	  each	  generation,	  i.e.,	  the	  population	  size.	  

Max_FES:	  maximum	  number	  of	  function	  evaluations.	  

The	  strategy	  candidate	  pool:	  “rand/1/bin”,	  “rand/2/bin”,	  and	  “current-‐to-‐rand/1”.	  

The	  parameter	  candidate	  pool:	  [𝐹   =   1.0,𝐶!   =   0.1],	  [𝐹   =   1.0,𝐶!   =   0.9],	  and	  [𝐹   =   0.8,𝐶!   =   0.2].	  

(1) G	  =	  0;	  

(2) Generate	  an	  initial	  population	  𝑃! = 𝑥!,!,… , 𝑥!",! 	  by	  uniformly	  and	  randomly	  sampling	  from	  the	  feasible	  
solution	  space;	  

(3) Evaluate	  the	  objective	  function	  values	  𝑓 𝑥!,! ,… , 𝑓(𝑥!",!);	  

(4) 𝐹𝐸𝑆   =   𝑁𝑃;	  

(5) while	  𝐹𝐸𝑆   <   𝑀𝑎𝑥_𝐹𝐸𝑆	  do	  

(6) 𝑃!!! =   ∅;	  

(7) for	  𝐼   =   1:𝑁𝑃  do	  

(8) Use	  the	  three	  trial	  vector	  generation	  strategies,	  each	  with	  a	  control	  parameter	  setting	  randomly	  selected	  
from	  the	  parameter	  candidate	  pool,	  to	  generate	  three	  trial	  vectors	  𝑢!_!,! ,	  𝑢!_!,! ,	  and	  𝑢!_!,! 	  for	  the	  target	  
vector𝑥!,!;	  

(9) Evaluate	  the	  objective	  function	  values	  of	  the	  three	  trial	  vectors	  𝑢!_!,! ,	  𝑢!_!,! ,	  and	  𝑢!_!,!;	  
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(10) Choose	  the	  best	  trial	  vector	  (denoted	  as	  𝑢!!,!
∗ )	  from	  the	  three	  trial	  vectors;	  

(11) 𝑃!!! = 𝑃!!!    𝑠𝑒𝑙𝑒𝑐𝑡(𝑥!,! ,   𝑢!!,!
∗ );	  

(12) 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + 3;	  

(13) end	  for	  

(14) 𝐺 = 𝐺 + 1;	  

(15) end	  while	  

Output:	  the	  individual	  with	  the	  smallest	  objective	  function	  value	  in	  the	  population.	  

[G	  =	  generation	  number;	  FES	  =	  number	  of	  function	  evaluations;	  F	  &	  Cr	  =	  control	  parameter	  settings]	  

Fig. 6.  Pseudocode of general CoDE Algorithm (from Wang et al. 2011) 
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2.3 Example Problems 

2.3.1 Zolfaghari et al. (2005) Inclined Weak Layer 
This problem has an inclined weak material between three other layers.  The problem geometry 
was recreated in bSLOPE, and both circular and non-circular failure searches were performed, 
and the results were compared with those published by Zolfaghari et al. (2005) and others.  

Layers 1 2 3 4 
𝑐!  (kPa) 15 17 5 35 
𝜙′  (deg) 20 21 10 28 
𝛾  (kg/m3) 19 19 19 19 

Table 2. Material properties for Zolfaghari et al. (2005) example problem 1. 

 

Fig. 7.  Slope geometry and materials from Zolfaghari, et al. (2005) example problem. 

 

	  

Fig. 8.  Circular Failure through inclined weak layer.  Bishop’s Method. 
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Search Method FS Value 
Simple	  Genetic	  Algorithm	  (Zolfaghari et al. 2005), 

Bishop 
1.475 

CoDE (Tabarroki 2012, this report), Bishop 1.39 

Table 3.  FS values from circular failure in Example Problem 1. 

 
The FS values for the circular failure analysis are very close, and the CoDE engine produced a 
slip surface that is nearly identical to the results in Zolfaghari et al. (2005).  bSLOPE produces a 
FS that is 5.7% less than the reference value.  
 

	  

Fig. 9.  Non-circular failure through inclined weak layer.  Spencer’s Method. 

 
Search	  Method	   FS	  Value	  

Simple	  Genetic	  Algorithm	  (Zolfaghari	  et	  al.	  2005),	  M-‐P	   1.24	  
Critical	  Acceleration	  (Sarma	  and	  Tan	  2006),	  Spencer	   1.091	  

MPSO	  (Cheng	  et	  al.	  2007),	  Spencer	   1.1289	  
Real-‐Coded	  GA	  (Li	  et	  al.	  2010),	  Spencer	   1.114	  

CoDE	  (Tabarroki	  2012,	  this	  report),	  Spencer	   1.12	  

Table 4.  FS values from non-circular failure search from various publications. 

	  
The	  non-‐circular	  failure	  surface	  produced	  by	  the	  CoDE	  engine	  in	  bSLOPE	  is	  nearly	  identical	  to	  
the	  slip	  surfaces	  presented	  in	  many	  of	  the	  other	  papers.	  	  This	  computation	  was	  performed	  in	  
approximately	  30	  seconds	  on	  a	  mobile	  processor	  with	  limited	  RAM.	  	  8000	  slip	  surfaces	  were	  
considered	  in	  generating	  this	  result,	  though	  convergence	  generally	  occurred	  closer	  to	  4000	  
iterations.	  
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2.3.2 Zolfaghari et al. (2005) Horizontal Weak Layer + Groundwater 
The next problem considers the same material properties as the first problem, but has the layers 
aligned horizontally.  We compute the FS value with and without a phreatic surface present. 

Layers 1 2 3 4 
𝑐!  (kPa) 15 17 5 35 
𝜙′  (deg) 20 21 10 28 
𝛾  (kg/m3) 19 19 19 19 

Table 5. Material properties for Zolfaghari et al. (2005) example problem 1. 

 
 

 

Fig. 10.  Non-circular failure through horizontally oriented weak layer without groundwater.  Spencer’s Method. 
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Search	  Method	   FS	  Value	  
Simple	  Genetic	  Algorithm	  (Zolfaghari	  et	  al.	  2005),	  M-‐P	   1.48	  
Simulated	  Annealing	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.3961	  
Genetic	  Algorithm	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.3733	  

Simple	  Harmony	  Search	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.3729	  
Modified	  Harmony	  Search	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.3501	  

CoDE	  (Tabarroki	  2012,	  this	  report),	  Spencer	   1.35	  

Table 6.  FS values without water table from various publications. 
 
The FS value from the bSLOPE’s CoDE Engine is quite efficient at locating the critical slip 
surface, requiring only 6000 trial slip surfaces to reliably converge to the lowest-FS slip surface. 
 

 

Fig. 11.  Non-circular failure through horizontally oriented weak layer with ground water.  Spencer’s Method. 
 

Search	  Method	   FS	  Value	  
Simple	  Genetic	  Algorithm	  (Zolfaghari	  et	  al.	  2005),	  M-‐P	   1.36	  
Simulated	  Annealing	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.2837	  
Genetic	  Algorithm	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.2324	  

Simple	  Harmony	  Search	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.2326	  
Modified	  Harmony	  Search	  (Cheng	  and	  Lau	  2008),	  Spencer	   1.2247	  

CoDE	  (Tabarroki	  2012,	  this	  report),	  Spencer	   1.23	  

Table 7.  FS values with water table from various publications. 

Once again, the CoDE engine produced the correct FS value with a phreatic surface specified. 
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2.3.3 Duncan and Wright (2005) - James Bay Dike  
Next, we consider a now classic slope stability problem, the James Bay Dike.  The material 
properties follow. 

Layers 1 2 3 4 
𝑐!  (kPa) 0 41 34.5 31.2 
𝜙′  (deg) 30 0 0 0 
𝛾  (kg/m3) 20 20 18.8 20.3 

Table 8. Material properties for James Bay Dike. 

 

Fig. 11.  James Bay Dike geometry and materials. 

 

 

Fig. 12.  Circular failure surface through James Bay Dike. 
 

Source FS Value 
SLOPE/W	  Example	  (Geo-‐Slope	  2008),	  Bishop 1.459 
CoDE (Tabarroki 2012, this report), Bishop 1.44 

Table 9.  Circular FS values for James Bay Dike. 
 
As we can see, CoDE produced a reasonable estimate of the FS value in this case.  The circle 
is nearly identical to the one presented in Duncan and Wright (2005), and in the SLOPE/W 
deterministic example problem, and the difference in FS can be assumed to be due to slight 
differences in Bishop’s implementation. 
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Next, a noncircular search was performed using 10 vertices.  bSLOPE produced a large slide 
through the base material above bedrock.  

 

Fig. 13.  Noncircular failure surface through James Bay Dike. 

 
Source FS Value 

Duncan	  and	  Wright	  (2005),	  Spencer 1.17 
CoDE (Tabarroki 2012, this report), Spencer 1.16 

Table 10.  Noncircular FS values for James Bay Dike. 
 
The FS value from bSLOPE is very close to the reference value.    The shape of the failure 
surface is almost identical to the published one from Duncan and Wright (2005).  Verification of 
this surface was performed with the MATLAB code by M. Tabarroki which resulted in a nearly 
identical surface with 20 vertices and a FS value of 1.1561, thus verifying the value from 
bSLOPE.  
	  

3 Conclusions 
bSLOPE	  is	  the	  first	  mobile	  engineering	  analysis	  tool	  of	  its	  kind	  and	  demonstrates	  the	  potential	  
of	  mobile	  devices	  for	  advanced	  applications	  in	  engineering	  research	  and	  practice.	  	  It	  uses	  an	  
advanced	  evolutionary	  optimization	  algorithm	  to	  accurately	  solve	  for	  circular	  and	  noncircular	  
failure	  surfaces	  through	  a	  variety	  of	  complex	  stratigraphic	  geometries	  and	  properties.	  	  It	  
performs	  very	  well	  in	  the	  iOS	  environment,	  and	  can	  be	  easily	  ported	  to	  run	  on	  Mac	  OS,	  
Windows,	  or	  Linux	  because	  it	  depends	  on	  very	  few	  external	  libraries.	  
	  
bSLOPE	  demonstrates	  	  that	  tablets	  have	  reached	  a	  point	  in	  their	  evolution	  that	  they	  now	  
contain	  the	  computational	  resources	  necessary	  to	  perform	  advanced	  engineering	  analysis	  
untethered	  from	  the	  confines	  of	  desk	  top	  computing.	  	  However,	  they	  require	  specialized	  
algorithm	  design	  and	  translation	  of	  existing	  libraries	  in	  order	  to	  utilize	  the	  power	  available.	  	  	  	  
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MWCoDEEngine.m 5/9/12 3:41 PM

//
//  MWCoDEEngine.m
//  bSLOPE
//
//  Created by Oliver Rickard on 2/19/12.
//  Copyright (c) 2012 Mobile World Software. All rights reserved.
//  Port of MATLAB code by Mohammad Tabarroki, published
//  with his permission.
//

#import "MWCoDEEngine.h"
#import "SMUGMath.h"
#include <Accelerate/Accelerate.h>
#include "JSGCDDispatcher.h"
#include "FSSlipPointsDataController.h"

/**
 This method uses the CoDE (Composite Differential Evolution, Yong Wang 2011

) to generate a new slip surface from an existing one.
 
 Input parameters are:
 RealMatrix *p: initial matrix in the form [x1,xn,sigma2,...sigman-1], where 

sigmai is between 0 and 1.
 RealMatrix *lu: Lower and upper bounds for each x-coordinate, generated 

through Cheng 2003 strategy.
 int i: current index of the slip surface.
 RealVector *F: Calibration parameter vector.  Contains one F value for each 

generation strategy.  See Yong Wang 2011.
 RealVector *CR: Calibration parameter vector.  Contains one CR value for 

each generation strategy.  See Yong Wang 2011.
 int popsize: size of the current population of slip surfaces.
 int n: selection index.
 RealVector *paraIndex: vector of parameter indices.  These are randomized 

from the set of F and CR for each slip surface.
 
 Output is a new RealMatrix of three row vectors which represent mutants of 

the three vector generation strategies.
*/
static RealMatrix *generator(RealMatrix *p, RealMatrix *lu, int i, 

RealVector *F, RealVector *CR, int popsize, int n, RealVector *paraIndex
) { }

@implementation MWCoDEEngine

#pragma mark - Utility Functions for Circular Surfaces

/**
 This function is for circular slip surfaces.  It simply computes the 2D 

arctangent between 0 and 360 degrees.
 
 Input parameters are:
 float y: y-value
 float x: x-value
 
 Output is the float value of the 2-D arctangent of the x and y values.
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*/
+(float)atan2d_0_360Y:(float)y X:(float)x;
{ }

/**
 This function is for circular slip surfaces.  It finds the center of a 

circle of Radius R which intersects points p1 and p2.
 
 Input parameters:
 CGPoint p1: CGPoint C struct value with x and y parameters.  First point 

value.
 CGPoint p2: CGPoint C struct value with x and y parameters.  Second point 

value.
 float R: float value representing the radius of the circle.
 
 Output is the CGPoint struct representing the center of the circle.
 
*/
+(CGPoint)findCenterP1:(CGPoint)p1 P2:(CGPoint)p2 R:(float)R;
{ }

/**
 This function is for circular slip surfaces.  It finds the minimum radius 

of a circle containing points p1 and p2.
 
 Input parameters:
 CGPoint p1: CGPoint C struct value with x and y parameters.  First point 

value.
 CGPoint p2: CGPoint C struct value with x and y parameters.  Second point 

value.
 
 Output is the float value of the radius.
*/
+(float)findMinR2P1:(CGPoint)p1 P2:(CGPoint)p2;
{ }

#pragma mark - Utility Functions

/**
 This function finds the intersection between two lines defined by [p1,p2] 

and [p3,p4].
 
 Input Parameters:
 CGPoint p1: CGPoint C struct with x and y parameters.  One of the points 

defining a line.
 CGPoint p2: CGPoint C struct with x and y parameters.  One of the points 

defining a line.
 CGPoint p3: CGPoint C struct with x and y parameters.  One of the points 

defining a line.
 CGPoint p4: CGPoint C struct with x and y parameters.  One of the points 

defining a line.
 
 Output is a CGPoint value for the intersection between the two lines.
 */
+(CGPoint)lineSegmentCrossP1:(CGPoint)p1 P2:(CGPoint)p2 P3:(CGPoint)p3 P4:

(CGPoint)p4;
28
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{ }

/**
 This interpolates between p1 and p2, with the restriction that the 

interpolated value must be below the ground surface.  If it is above 
the ground surface, then the value is interpolated in the ground matrix
.

 CGPoint p1: First point defining line, usually line between vertices on a 
slip surface.  CGPoint C struct with x and y parameters.

 CGPoint p2: Second point defining line, usually line between vertices on a 
slip surface.  CGPoint C struct with x and y parameters.

 RealMatrix *ground: Matrix of (x,y) row vectors of vertices of the ground 
surface.

 
 Output is the interpolated y value.
 */
+(float)lineOrBelowP1:(CGPoint)p1 P2:(CGPoint)p2 X:(float)x ground:

(RealMatrix *)ground;
{ }

/**
 Function that generates a RealMatrix from an array of RealMatrix objects.
 
 Input Parameters:
 NSArray *arr: NSArray of RealMatrix objects.  Do not have to be all the 

same size.
 
 Output is a RealMatrix with each matrix appended to the bottom of a larger 

matrix.  The largest column number is taken for the output matrix, and 
zeros are inserted in the matrix for any matrices with less columns.

 */
+(RealMatrix *)matrixFromArray:(NSArray *)arr;
{ }

/**
 This function finds the radius of the moment arm betweent the point, and 

the line defined by v1 and v2.
 
 Input parameters:
 CGPoint p1: Center of the rotation.  CGPoint C struct with x and y 

parameters.
 CGPoint v1: One of the points defining the direction of the force vector.  

CGPoint C struct with x and y parameters.
 CGPoint v2: The other point defining the direction of the force vector.  

CGPoint C struct with x and y parameters.
 
 Output is the float value of the radius of moment arm.
*/
+(float)getMomentArmPt:(CGPoint)pt V1:(CGPoint)v1 V2:(CGPoint)v2;
{ }

/**
 This function computes the perpendicular offset of the normal placed at the 

midpoint of [v1,v2] towards pt between the that normal ray, and pt.
 
 Input parameters:
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 CGPoint pt: CGPoint C struct with x and y parameters.  This is the point 
that the distance is calculated from.

 CGPoint v1: CGPoint C struct with x and y parameters.  Defines one side of 
the line.

 CGPoint v2: CGPoint C struct with x and y parameters.  Defines other side 
of the line.

 
 Output is the float distance from pt to the line normal to [v1,v2].
*/
+(float)point_prpnd_line:(CGPoint)pt V1:(CGPoint)v1 V2:(CGPoint)v2;
{ }

/**
 This function computes a linearly interpolated yVal value between two 

neighboring points.  xVal must be between neighbor1.x and neighbor2.x, 
and neighbor1.x must be less than neighbor2.x.

 
 Input Parameters:
 CGPoint neighbor1: This is the left neighbor of the point that needs to be 

interpolated.  CGPoint C struct with x and y parameters.
 CGPoint neighbor2: This is the right neighbor of the point that needs to be 

interpolated.  CGPoint C struct with x and y parameters.
 float xVal: This is the x value for which we want to interpolate a y value.
 
 Output is a float y interpolation.
 */
+(float)interp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2 xVal:(float)

xVal;
{ }

/**
 This function computes linearly interpolated yVal between two neighboring 

points. neighbor1 and neighbor2 need not be in any particular order.  
The if tree is in place to ensure that the minimum possible number of 
comparisons is done for most use cases.

 
 Input Parameters:
 CGPoint neighbor1: This is the first neighbor of the point that needs to be 

interpolated.  CGPoint C struct with x and y parameters.
 CGPoint neighbor2: This is the other neighbor of the point that needs to be 

interpolated.  CGPoint C struct with x and y parameters.
 float xVal: This is the x value for which we want to interpolate a y value.
 float defValue: Default interpolation value if xVal is not within the range 

[neighbor1.x,neighbor2.x] or [neighbor2.x,neighbor1.x].
 
 Output is the y value of the interpolation.  If the xVal is not within the 

correct range, then the default value will be returned.
 */
+(float)safeInterp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2 xVal:

(float)xVal defValue:(float)defValue;
{ }

/**
 This function performs a safeInterp on all of the values in xVals.
 
 Input Parameters:
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 CGPoint neighbor1: This is the first neighbor of the point that needs to be 
interpolated.  CGPoint C struct with x and y parameters.

 CGPoint neighbor2: This is the other neighbor of the point that needs to be 
interpolated.  CGPoint C struct with x and y parameters.

 RealVector *xVals: These are the x values for which we want to interpolate 
y values.

 float defValue: Default interpolation value if xVal is not within the range 
[neighbor1.x,neighbor2.x] or [neighbor2.x,neighbor1.x].

 
 Output is a vector of interpolated y values.  If the xVal is not within the 

correct range, then the default value will be inserted at that index.
 */
+(RealVector *)safeInterp:(CGPoint)neighbor1 neighbor2:(CGPoint)neighbor2 

xVals:(RealVector *)xVals defValue:(float)defValue;
{ }

/**
 Linearly interpolates between the values in x and y for all x-values in xi.  

Default value is inserted in the return vector for any values outside 
of x.

 
 Input Parameters:
 RealVector *x: x-values for the points between which we want to interpolate

.
 RealVector *y: y-values for the points between which we want to interpolate

.
 RealVector *xi: x-values that we want to interpolate a y value.
 float defValue: Default value if a particular xi is not within the x range.
 
 Output is a vector of y-values at each xi.
 */
//Linearly interpolates between the values (x,y) for all x-values in xi.
+(RealVector *)lininterp1fX:(RealVector *)x Y:(RealVector *)y Xi:(RealVector 

*)xi DefValue:(float)defValue;
{ }

#pragma mark - GLE Implementation, non-circular

/**
 Newton Raphson method to provide a new lambda value.  See Newton Raphson on 

Wikipedia.
 
 Input Parameters:
 float FSm: FS from moment equilibrium.
 float FSmOld: Old FS from moment equilibrium.
 float FSf: FS from force equilibrium.
 float FSfOld: Old FS from force equilibrium
 float myLambda: Current lambda value.
 float myLambdaOld: old lambda value.
 
 Output is the new lambda given the input parameters.
 */
+(float)newtonRaphsonFSm:(float)FSm FSmOld:(float)FSmOld FSf:(float)FSf 

FSfOld:(float)FSfOld myLambda:(float)myLambda myLambdaOld:(float)
myLambdaOld;

{ }
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/**
 This function computes the force-equilibrium FS value for the slices given 

the parameters in the vector arguments.  Computed according to the GLE 
formulation in Fredlund and Krahn.

 
 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for 

the base of each slice.  Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the 

base of each slice.  Units of m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line 

defining the base of each slice.  Units of degrees.
 RealVector *sN: Vector containing the normal force along the bottom of each 

slice.  Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of 

each slice.  Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle 

of the soil along the base of each slice.  Units of degrees.
 
 Output is a float value for the force-equilibrium FS.
*/
+(float)GLEfsFSliceCohesion:(RealVector *)sCohesion sliceLength:(RealVector 

*)sLength sliceAlpha:(RealVector *)sAlpha sliceN:(RealVector *)sN 
sliceU:(RealVector *)sU sliceFrictionAngle:(RealVector *)sFrictionAngle;

{ }

/**
 This function computes the moment-equilibrium FS value for the slices given 

the parameters in the vector arguments.  Computed according to the GLE 
formulation in Fredlund and Krahn.

 
 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for 

the base of each slice.  Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the 

base of each slice.  Units of m.
 RealVector *sR: Vector containing the moment arm for each slice.  Units of 

m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line 

defining the base of each slice.  Units of degrees.
 RealVector *sN: Vector containing the normal force along the bottom of each 

slice.  Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of 

each slice.  Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle 

of the soil along the base of each slice.  Units of degrees.
 RealVector *sWeight: Vector containing weight of the material in each slice

.  Units of kN.
 RealVector *sf: Vector containing perpendicular offset of the normal force 

from the center of rotation.  Units of m.
 RealVector *sx: Vector containing horizontal distance from the slice to the 

center of rotation.  Units of m.
 
 Output is a float value for the moment-equilibrium FS.
 */
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+(float)GLEfsMSliceCohesion:(RealVector *)sCohesion sliceLength:(RealVector 
*)sLength sliceR:(RealVector *)sR sliceN:(RealVector *)sN sliceU:
(RealVector *)sU sliceFrictionAngle:(RealVector *)sFrictionAngle 
sliceWeight:(RealVector *)sWeight slicef:(RealVector *)sf slicex:
(RealVector *)sx;

{ }

/**
 This function generates the sliceN vector, which is the total nomral force 

on the base of each slice in vector form.
 
 Input parameters:
 RealVector *sWeight: Vector containing the weight of each slice.  Units of 

kN.
 RealVector *sXr_Xl: Vector containing the resultant of the vertical 

interslice shear forces for each slice.  Units of kPa.
 RealVector *sCohesion: This is a vector containing one cohesion value for 

the base of each slice.  Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the 

base of each slice.  Units of m.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line 

defining the base of each slice.  Units of degrees.
 RealVector *sU: Vector containing the suction force along the bottom of 

each slice.  Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the internal friction 

angle of the soil along the base of each slice.  Units of degrees.
 float trialF: The current FS for the current trial vector.
 
 Output is a vector of slice normal forces, sliceN.
*/
//This function generates the sliceN vector, the total normal force on the 

base of the slice.
+(RealVector *)GLEsliceNSliceWeight:(RealVector *)sWeight sliceXr_Xl:

(RealVector *)sXr_Xl sliceCohesion:(RealVector *)sCohesion sliceLength:
(RealVector *)sLength sliceAlpha:(RealVector *)sAlpha sliceU:(RealVector 
*)sU sliceFrictionAngle:(RealVector *)sFrictionAngle trialF:(float)
trialF;

{ }

/**
 This function finds the FS using the ordinary method of slices (OMS), which 

is the first stage of the GLE solution.
 
 Input Parameters:
 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 

kN.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 

base of each slice.  Units of degrees.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of 

each slice.  Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that 

defines the bottom of each slice.  Units of m.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of 

each slice at the base.  Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each 

slice.  Units of kPa.
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 RealVector *sliceR: Vector containing length of moment arm to where forces 
act.  Units of m.

 
 Output is the FS as a float value.
 */
+(float)ordinaryFSBuilderv2SliceWeight:(RealVector *)sliceWeight sliceAlpha:

(RealVector *)sliceAlpha sliceCohesion:(RealVector *)sliceCohesion 
sliceLength:(RealVector *)sliceLength sliceFrictionAngle:(RealVector *)
sliceFrictionAngle sliceU:(RealVector *)sliceU sliceR:(RealVector *)
sliceR;

{ }

/**
 This function finds the GLE simplified Bishop FS for the given slip surface

.
 
 Input Parameters:
 float FSm: FS value for moment equilibrium as initial guess for this 

function.
 float myPrecision: Decimal value defining the precision at which 

convergence has been reached.  Generally 0.001 to 0.00001.  Floats are 
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of 
each slice.  Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that 
defines the bottom of each slice.  Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 
base of each slice.  Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each 
slice.  Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of 
each slice at the base.  Units of degrees.

 RealVector *slicef: Vector containing perpendicular offset of the normal 
force from the center of rotation.  Units of m.

 RealVector *slicex: Vector containing horizontal distance from the slice to 
the center of rotation.  Units of m.

 RealVector *sliceR: Vector containing length of moment arm to where forces 
act.  Units of m.

 unsigned int maxIteration: Maximum number of iterations before the slip 
surface is assumed to not converge.

 
 Output is an array of moment-equilibrium FS and N value associated in an 

NSArray, in that order.
 */
+(NSArray *)gleBishopTrialF:(float)FSm myPrecision:(float)myPrecision 

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle slicef:(RealVector *)slicef slicex:
(RealVector *)slicex sliceR:(RealVector *)sliceR maxIteration:(unsigned 
int)maxIteration;

{ }

/**
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 This function finds the GLE simplified Janbu FS for the given slip surface.
 
 Input Parameters:
 float FSf: FS value for force equilibrium as initial guess for this 

function.
 float myPrecision: Decimal value defining the precision at which 

convergence has been reached.  Generally 0.001 to 0.00001.  Floats are 
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of 
each slice.  Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that 
defines the bottom of each slice.  Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 
base of each slice.  Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each 
slice.  Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of 
each slice at the base.  Units of degrees.

 unsigned int maxIteration: Maximum number of iterations before the slip 
surface is assumed to not converge.

 
 Output is an array of force-equilibrium FS and N value associated in an 

NSArray, in that order.
 */
+(NSArray *)gleJanbuTrialF:(float)FSf myPrecision:(float)myPrecision 

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function finds the inter-slice horizontal force resultant from the 

difference between right and left side.  Done for each slice, and 
stored in a vector.

 
 Input Parameters:
 RealVector *sliceCohesion: Vector containing cohesion value at the base of 

each slice.  Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that 

defines the bottom of each slice.  Units of m.
 RealVector *sliceN: Vector containing the normal force along the bottom of 

each slice.  Units of kPa.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 

base of each slice.  Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each 

slice.  Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of 

each slice at the base.  Units of degrees.
 float trialF: Current trial FS float value.
 
 Output is a vector of the Er-El float value at each slice.
 */
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+(RealVector *)GLESliceEr_ElSliceCohesion:(RealVector *)sliceCohesion 
sliceLength:(RealVector *)sliceLength sliceN:(RealVector *)sliceN 
sliceAlpha:(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU 
sliceFrictionAngle:(RealVector *)sliceFrictionAngle trialF:(float)trialF
;

{ }

/**
 This function computes the force-equilibrium for a slip surface.  This is 

the last stage of the force GLE solution.
 
 Input Parameters:
 float FSf: Initial guess for force-equilibrium for the current slip surface

.
 float myPrecision: Decimal representing the precision at which convergence 

is assumed to have occurred.  Generally 0.001 to 0.00001.
 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 

kN.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of 

each slice.  Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that 

defines the bottom of each slice.  Units of m.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 

base of each slice.  Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each 

slice.  Units of kPa.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of 

each slice at the base.  Units of degrees.
 RealVector *sliceNf: Vector containing initial N value guess.
 float myLambda: Current lambda value from either an initial guess or the 

Newton-Raphson method.
 unsigned int maxIteration: Maximum number of iterations before the slip 

surface is assumed to not converge.
 
 Output is a NSArray of the force-equilibrium FS and the associated N value, 

in that order.
 */
+(NSArray *)gleSolverFSf:(float)FSf myPrecision:(float)myPrecision 

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle sliceNf:(RealVector *)sliceNf myLambda:
(float)myLambda maxIteration:(unsigned int)maxIteration;

{ }

/**
 This function computes the moment-equilibrium for a slip surface.  This is 

the last stage of the moment GLE solution.
 
 Input Parameters:
 float FSm: Initial guess for moment-equilibrium for the current slip 

surface.
 float myPrecision: Decimal representing the precision at which convergence 

is assumed to have occurred.  Generally 0.001 to 0.00001.
 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 

kN.
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 RealVector *sliceCohesion: Vector containing cohesion value at the base of 
each slice.  Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that 
defines the bottom of each slice.  Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 
base of each slice.  Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each 
slice.  Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of 
each slice at the base.  Units of degrees.

 RealVector *slicef: Vector containing perpendicular offset of the normal 
force from the center of rotation.  Units of m.

 RealVector *slicex: Vector containing horizontal distance from the slice to 
the center of rotation.  Units of m.

 RealVector *sliceR: Vector containing length of moment arm to where forces 
act.  Units of m.

 RealVector *sliceNm: Vector containing initial guess of N value.
 float myLambda: Current lambda value from either an initial guess or the 

Newton-Raphson method.
 unsigned int maxIteration: Maximum number of iterations before the slip 

surface is assumed to not converge.
 
 Output is a NSArray of the moment-equilibrium FS and the associated N value

, in that order.
 */
+(NSArray *)gleSolverFSm:(float)FSm myPrecision:(float)myPrecision 

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle slicef:(RealVector *)slicef slicex:
(RealVector *)slicex sliceR:(RealVector *)sliceR sliceNm:(RealVector *)
sliceNm myLambda:(float)myLambda maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function is the primary analyzer engine that finds the FS for the 

failure surface specified in slipPoints.  It uses the GLE to determine 
Morgenstern-Price and Spencer FS.

 
 Input Parameters:
 float gammaWater: Specific weight of water.  Units of kN/m3.
 RealMatrix *slipPoints: Matrix of (x,y) row vectors defining the current 

slip surface.
 CGPoint axisPoint: CGPoint C struct with x and y parameters.  Point about 

which moments are computed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is 

assumed to have occurred.
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 unsigned int maxIteration: Maximum number of iterations before the slip 
surface is assumed to not converge.

 
 Output is the converged FS value for the given failure surface.
 */
+(float)analyzerEngineNonCircGammaWater:(float)gammaWater slipPoints:

(RealMatrix *)slipPoints axisPoint:(CGPoint)axisPoint nonEdgeLines:
(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:
(RealMatrix *)materials phreaticLine:(RealMatrix *)phreaticLine 
myPrecision:(float)myPrecision maxIteration:(unsigned int)maxIteration;

{ }

/**
 This function is the real workhorse of the app.  It takes an initial 

population of "pos" vectors that define slip surfaces, then it 
generates failure surfaces for those vectors, and evaluates the FS for 
them using the GLE from Fredlund and Krahn.  This is the single-
threaded function.

 
 Input Parameters:
 RealMatrix *pos: Matrix of "pos" row vectors.  The first two values in the 

row are the entry and exit x values, then the rest of the values are 
the vertical placement of the vertex between 0 and 1.

 CGPoint axisPoint: CGPoint C struct with x and y parameters.  This is the 
center about which moments are computed.

 unsigned int noSlice: This is the number of slices for each slip surface.
 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is 

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip 

surface is assumed to not converge.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the 

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of 

the cross section.
 float gammaWater: Specific weight of water.  Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

.  Each polygon is a RealMatrix with (x,y) row vector.
 completionBlock: This is an Objective-C block to execute upon completion of 

FS evaluations.  This is here to retain the same method signature 
between the single-threaded and multithreaded versions of this function
.

 
 Output is stored in the FSSlipPointsController singleton as an array of FS 

values, and an array of RealMatrix slip points.
 */
+(void)FSsEvalPos:(RealMatrix *)pos axisPoint:(CGPoint)axisPoint noSlice:

(unsigned int)noSlice tolSlicing:(float)tolSlicing nonEdgeLines:
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(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:
(RealMatrix *)materials phreaticLine:(RealMatrix *)phreaticLine 
myPrecision:(float)myPrecision maxIteration:(unsigned int)maxIteration 
ground:(RealMatrix *)ground bedrock:(RealMatrix *)bedrock gammaWater:
(float)gammaWater layersCord:(NSMutableArray *)layersCord 
completionBlock:(void (^)())completionBlock;

{ }

#pragma mark - Slice Info Methods

/**
 This function gets the weight of a given slice.
 
 Input Parameters:
 float sWidth: Width of the given slice.  Units of m.
 RealVector *yVals: Vector containing the y-values of the slice's centerline 

with the stratigraphic boundaries.  Units of m.
 RealVector *matVals: Vector containing the material indices for each 

stratigraphic layer that the slice intersects.
 RealVector *materialsWeight: Vector containing the material weights for all 

materials.
 
 Output is the weight of the slice in units of kN.
*/
+(float)slWeightBuilderSliceWidth:(float)sWidth yVals:(RealVector *)yVals 

matVals:(RealVector *)matVals materialsWeight:(RealVector *)
materialsWeight;

{ }

/**
 This function builds the sliceInfo matrix which contains the relevant 

parameters for each slice.
 
 Input Parameters:
 float gammaWater: Specific weight of water.  Units of kN/m3.
 RealMatrix *slipPoints: Matrix representation of the slipPoints that define 

the failure surface.  Matrix of (x,y) row-vectors.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 CGPoint axisPoint: CGPoint C struct with x and y parameters.  This is the 

center of rotation for the FS calculations.
 
 Output is the sliceInfo matrix that contains rows in this order: 

sliceWeight, sliceAlpha, sliceCohesion, sliceWidth, sliceFrictionAngle, 
sliceU, slicef, sliceR, slicex.

*/
+(RealMatrix *)sliceInfoBuilderv2GammaWater:(float)gammaWater slipPoints:

(RealMatrix *)slipPoints nonEdgeLines:(RealMatrix *)nonEdgeLines 
edgeLines:(RealMatrix *)edgeLines materials:(RealMatrix *)materials 
phreaticLine:(RealMatrix *)phreaticLine axisPoint:(CGPoint)axisPoint;
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{ }

/**
 This function generates additional vertices for the failure 

surfacecontained in origSlipPoints according to the rules in Cheng.
 
 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the 

stratigraphic elements in the cross section as polygons.  Each 
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the 
failure surface.  (x,y) row vectors.

 
 Output is a RealMatrix of the origSlipPoints, plus the new inserted points.
*/
+(RealMatrix *)moreSlicesRegionPointsLayersCord:(NSMutableArray *)layersCord 

slipPoints:(RealMatrix *)origSlipPoints;
{ }

/**
 This function generates additional vertices for the failure 

surfacecontained in origSlipPoints according to the rules in Cheng.
 
 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the 

stratigraphic elements in the cross section as polygons.  Each 
RealMatrix has (x,y) row vectors.

 RealMatrix *slip: Original matrix of slip points that compose the failure 
surface.  (x,y) row vectors.

 
 Output is a RealMatrix of the slip, plus the new inserted points.
 */
+(RealMatrix *)moreSlicesCrossBoundaryLayersCord:(NSMutableArray *)

layersCord slipPoints:(RealMatrix *)slip;
{ }

/**
 This method refines the mesh of slices.  It starts by adding slices at 

important locations such as where the slip surface crosses 
stratigraphic boundaries.  Picks the biggest slice and splits it until 
it reaches the specified number of slices (noSlice).

 
 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the 

stratigraphic elements in the cross section as polygons.  Each 
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the 
failure surface.  (x,y) row vectors.

 unsigned int noSlice: Number of slices for each slip surface.
 float tolSlicing: The smallest allowed slice width.  Any smaller, and the 

slice is removed from the slip surface.
 
 Output is the matrix defining the new slip surface with the added points.
*/
+(RealMatrix *)moreSlicesLayersCord:(NSMutableArray *)layersCord slipPoints:

(RealMatrix *)origSlipPoints noSlice:(unsigned int)noSlice tolSlicing:
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(float)tolSlicing;
{ }

#pragma mark - Problem Setup Functions

/**
 This function extracts the top and bottom boundaries of the cross section 

from the nonEdgeLines matrix.
 
 Input Parameters:
 RealMatrix *nonEdgeLines: Matrix of (x,y) row vectors defining the lines 

that make up the exterior boundary of the cross-section.
 
 Output is an NSArray of the top (ground) and bottom (bedrock) of the cross 

section.
*/
+(NSArray *)grndBdrckExtractorNonEdgeLines:(RealMatrix *)nonEdgeLines;
{ }

/**
 This function examines the array of stratigraphic layers, and builds a 

matrix of internal (edgeLines) and exterior (nonEdgeLines) edges.
 
 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the 

stratigraphic elements in the cross section as polygons.  Each 
RealMatrix has (x,y) row vectors.

 
 Output is the array of edgeLines and nonEdgeLines matrices with (x,y) row 

vectors.
*/
+(NSArray *)edgeAndNonEdgeLayersCord:(NSMutableArray *)layersCord;
{ }

#pragma mark - CoDE Methods

/**
 This function generates the lower and upper range of potential x values for 

the entry and exit points, and the vertical positioning of each vertex 
in the failure surface (sigma in the paper).

 
 Input Parameters:
 RealVector *xStartRange: Vector containing two values that define the range 

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range 
of acceptable exit points for a slip surface through the cross section.

 unsigned int noVertices: The number of vertices in the slip surface.
 
 Output is a RealVector of length noVertices and with two rows.  The first 

row is the lower bound of potential slip surfaces, and the second row 
is the upper bound.  This matrix is called "lu" for lower-upper in 
other parts of the code.

*/
+(RealMatrix *)luGeneratorV2XStartRange:(RealVector *)xStartRange xEndRange:

(RealVector *)xEndRange noVertices:(unsigned int)noVertices;
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{ }

/**
 This function generates the x and y values for a slip surface based on the 

upper boundary (ground), bottom boundary (bedrock), and the vector with 
the beginning and end x values, then the sigma values in a vector 
called pos.

 
 Input Parameters:
 RealMatrix *ground: Matrix of (x,y) row vectors defining the top boundary 

of the cross section.
 RealMatrix *bedrock: Matrix of (x,y) row vectors defining the bottom 

boundary of the cross section.
 RealVector *pos: Vector with the entry and exit x-values, and sigma values 

between 0 and 1 that define each slip vertex's y-location between the 
lower and upper boundary for each x value between the beginning and end
.

 
 Output is the RealMatrix of (x,y) row vectors of the generated slip surface

, after processing the pos vector.
*/
+(RealMatrix *)slipGeneratorNonConvexV2Ground:(RealMatrix *)ground bedrock:

(RealMatrix *)bedrock pos:(RealVector *)pos;
{ }

/**
 This function is the Composite Differential Evolution algorithm.  See Yong 

Wang 2011 and attached paper for info on its implementation.
 
 Input Parameters:
 unsigned int popsize: Population size of the slip surfaces to be evolved.
 unsigned int noSlice: Number of slices in each slip surface.
 unsigned int Niter: The number of successive iterations of evolution of the 

population of slip surfaces.
 CGPoint axisPoint: CGPoint C struct with x and y parameters.  Point about 

which rotation is calculated.
 unsigned int noVertice: Number of initial vertices to generate for the slip 

surfaces.
 float myPrecision: Decimal used to judge whether or not convergence has 

been reached.  Generally 0.001 to 0.00001.
 unsigned int maxIteration: Maximum number of iterations for each slip 

surface FS evaluation.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the 

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of 

the cross section.
 RealVector *xStartRange: Vector containing two values that define the range 

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range 
of acceptable exit points for a slip surface through the cross section.

 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
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 RealMatrix *materials: Matrix of material properties.  Each material is a 
column vector.

 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 
of the phreatic surface within the slope.

 float gammaWater: Specific weight of water.  Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

.  Each polygon is a RealMatrix with (x,y) row vector.
 NSObject *notified: Object to be notified on the progress of the CoDE 

Engine.
 
 Output is an array of the slip surface, and the FS value for the lowest-FS 

slip surface, in that order.
*/
+(NSArray *)CoDEEnginePopsize:(unsigned int)popsize noSlice:(unsigned int)

noSlice Niter:(unsigned int)Niter axisPoint:(CGPoint)axisPoint 
noVertice:(unsigned int)noVertice myPrecision:(float)myPrecision 
maxIteration:(unsigned int)maxIteration ground:(RealMatrix *)ground 
bedrock:(RealMatrix *)bedrock xStartRange:(RealVector *)xStartRange 
xEndRange:(RealVector *)xEndRange tolSlicing:(float)tolSlicing 
nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)
edgeLines materials:(RealMatrix *)materials phreaticLine:(RealMatrix *)
phreaticLine gammaWater:(float)gammaWater layersCord:(NSMutableArray *)
layersCord notified:(NSObject *)notified;

{ }

#pragma mark - Main CoDE Function

/**
 This function is what gets called by the user interface to begin a 

computation.  All that is needed to begin a computation are these four 
objects.

 
 Input Parameters:
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

.  Each polygon is a RealMatrix with (x,y) row vector.
 RealVector *xStartRange: Vector containing two values that define the range 

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range 
of acceptable exit points for a slip surface through the cross section.

 NSObject *notified: Object to be notified on the progress of the CoDE 
Engine.  Generally the object that calls this function.  The 
updateCoDEProgress:(float)progress function is called with a value from 
0 to 1 signifying the completion of the task.

 
 This function terminates without a direct output.  It calls the 

setSlipSurface:(RealMatrix *)slipSurface and setFS:(float)FS functions 
on the notified object.

*/
+ (void)mainCoDE:(NSMutableArray *)layersCord materials:(RealMatrix *)

materials phreaticLine:(RealMatrix *)phreaticLine xStartRange:
(RealVector *)xStartRange xEndRange:(RealVector *)xEndRange nonCircular:
(BOOL)nonCircular notified:(NSObject *)notified;

{ }
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#pragma mark - Circular CoDE Implementation
/**
 This function is the Composite Differential Evolution algorithm.  See Yong 

Wang 2011 and attached paper for info on its implementation.
 
 Input Parameters:
 unsigned int popsize: Population size of the slip surfaces to be evolved.
 unsigned int noSlice: Number of slices in each slip surface.
 unsigned int Niter: The number of successive iterations of evolution of the 

population of slip surfaces.
 CGPoint axisPoint: CGPoint C struct with x and y parameters.  Point about 

which rotation is calculated.
 unsigned int noVertice: Number of initial vertices to generate for the slip 

surfaces.
 float myPrecision: Decimal used to judge whether or not convergence has 

been reached.  Generally 0.001 to 0.00001.
 unsigned int maxIteration: Maximum number of iterations for each slip 

surface FS evaluation.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the 

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of 

the cross section.
 RealVector *xStartRange: Vector containing two values that define the range 

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range 
of acceptable exit points for a slip surface through the cross section.

 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 float gammaWater: Specific weight of water.  Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

.  Each polygon is a RealMatrix with (x,y) row vector.
 NSObject *notified: Object to be notified on the progress of the CoDE 

Engine.
 
 Output is an array of the slip surface, and the FS value for the lowest-FS 

slip surface, in that order.
 */
+(NSArray *)CoDEEngineCircPopsize:(unsigned int)popsize noSlice:(unsigned 

int)noSlice maxRFactor:(int)maxRFactor Niter:(unsigned int)Niter 
axisPoint:(CGPoint)axisPoint myPrecision:(float)myPrecision 
maxIteration:(unsigned int)maxIteration ground:(RealMatrix *)ground 
bedrock:(RealMatrix *)bedrock xStartRange:(RealVector *)xStartRange 
xEndRange:(RealVector *)xEndRange tolSlicing:(float)tolSlicing 
nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:(RealMatrix *)
edgeLines materials:(RealMatrix *)materials phreaticLine:(RealMatrix *)
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phreaticLine gammaWater:(float)gammaWater layersCord:(NSMutableArray *)
layersCord notified:(NSObject *)notified;

{ }

/**
 This function generates the lower and upper range of potential x values for 

the entry and exit points, radius for the slip surface.
 
 Input Parameters:
 RealVector *xStartRange: Vector containing two values that define the range 

of acceptable entry points for a slip surface through the cross section
.

 RealVector *xEndRange: Vector containing two values that define the range 
of acceptable exit points for a slip surface through the cross section.

 
 Output is a RealVector of length 3 and with two rows.  The first row is the 

lower bound of potential slip surfaces, and the second row is the upper 
bound.  This matrix is called "lu" for lower-upper in other parts of 
the code.

 */
+(RealMatrix *)luGeneratorCircXStartRange:(RealVector *)xStartRange 

xEndRange:(RealVector *)xEndRange;
{ }

/**
 This function generates the x and y values for a slip surface based on the 

upper boundary (ground), bottom boundary (bedrock), and the vector with 
the beginning and end x values, radius sigma in V.

 
 Input Parameters:
 int numSlice: number of slices to construct from the circular failure 

surface.
 RealMatrix *ground: Matrix of (x,y) row vectors defining the top boundary 

of the cross section.
 RealMatrix *bedrock: Matrix of (x,y) row vectors defining the bottom 

boundary of the cross section.
 RealVector *V: Vector with the entry and exit x-values, and one sigma 

values between 0 and 1 that defines the radius.
 
 Output is the RealMatrix of (x,y) row vectors of the generated slip surface

, after processing the pos vector.
 */
+(NSArray *)slipGeneratorCircNumSlice:(int)numSlice ground:(RealMatrix *)

ground bedrock:(RealMatrix *)bedrock maxRFactor:(float)maxRFactor V:
(RealVector *)V;

{ }

#pragma mark - Circular GLE Implementation

/**
 This function computes the circular moment-equilibrium FS value for the 

slices given the parameters in the vector arguments.  Computed 
according to the GLE formulation in Fredlund and Krahn.

 
 Input parameters:
 RealVector *sCohesion: This is a vector containing one cohesion value for 
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the base of each slice.  Units of kPa.
 RealVector *sLength: Vector containing the length of the line defining the 

base of each slice.  Units of m.
 RealVector *sN: Vector containing the normal force along the bottom of each 

slice.  Units of kPa.
 RealVector *sU: Vector containing the suction force along the bottom of 

each slice.  Units of kPa.
 RealVector *sFrictionAngle: Vector containing the internal friction angle 

of the soil along the base of each slice.  Units of degrees.
 RealVector *sWeight: Vector containing weight of the material in each slice

.  Units of kN.
 RealVector *sAlpha: Vector containing the angle from horizontal of the line 

defining the base of each slice.  Units of degrees.
 
 Output is a float value for the circular moment-equilibrium FS.
 */
+(float)GLEfsMCircSliceCohesion:(RealVector *)sCohesion sliceLength:

(RealVector *)sLength sliceN:(RealVector *)sN sliceU:(RealVector *)sU 
sliceFrictionAngle:(RealVector *)sFrictionAngle sliceWeight:(RealVector 
*)sWeight sliceAlpha:(RealVector *)sAlpha;

{ }

/**
 This function finds the circular FS using the ordinary method of slices 

(OMS), which is the first stage of the GLE solution.
 
 Input Parameters:
 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 

kN.
 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 

base of each slice.  Units of degrees.
 RealVector *sliceCohesion: Vector containing cohesion value at the base of 

each slice.  Units of kPa.
 RealVector *sliceLength: Vector containing the length of the line that 

defines the bottom of each slice.  Units of m.
 RealVector *sliceFrictionAngle: Vector containing the friction angle of 

each slice at the base.  Units of degrees.
 RealVector *sliceU: Vector containing suction value at the base of each 

slice.  Units of kPa.
 
 Output is the FS as a float value.
 */
+(float)ordinaryFSBuilderv2CircSliceWeight:(RealVector *)sliceWeight 

sliceAlpha:(RealVector *)sliceAlpha sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceFrictionAngle:
(RealVector *)sliceFrictionAngle sliceU:(RealVector *)sliceU; 

{ }

/**
 This function finds the circular simplified Bishop FS for the given slip 

surface.
 
 Input Parameters:
 float FSm: FS value for moment equilibrium as initial guess for this 

function.
 float myPrecision: Decimal value defining the precision at which 
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convergence has been reached.  Generally 0.001 to 0.00001.  Floats are 
generally precise to 0.000001, though not always.

 RealVector *sliceWeight: Vector containing weights of each slice.  Units of 
kN.

 RealVector *sliceCohesion: Vector containing cohesion value at the base of 
each slice.  Units of kPa.

 RealVector *sliceLength: Vector containing the length of the line that 
defines the bottom of each slice.  Units of m.

 RealVector *sliceAlpha: Vector containing the angle from horizontal of the 
base of each slice.  Units of degrees.

 RealVector *sliceU: Vector containing suction value at the base of each 
slice.  Units of kPa.

 RealVector *sliceFrictionAngle: Vector containing the friction angle of 
each slice at the base.  Units of degrees.

 unsigned int maxIteration: Maximum number of iterations before the slip 
surface is assumed to not converge.

 
 Output is an array of moment-equilibrium FS and N value associated in an 

NSArray, in that order.
 */
+(NSArray *)gleBishopCircTrialF:(float)FSm myPrecision:(float)myPrecision 

sliceWeight:(RealVector *)sliceWeight sliceCohesion:(RealVector *)
sliceCohesion sliceLength:(RealVector *)sliceLength sliceAlpha:
(RealVector *)sliceAlpha sliceU:(RealVector *)sliceU sliceFrictionAngle:
(RealVector *)sliceFrictionAngle maxIteration:(unsigned int)maxIteration
;

{ }

/**
 This function is the primary analyzer engine that finds the circular FS for 

the failure surface specified in slipPoints.  It uses the GLE to 
determine Spencer FS.

 
 Input Parameters:
 RealMatrix *slipPoints: Matrix of (x,y) row vectors defining the current 

slip surface.
 float gammaWater: Specific weight of water.  Units of kN/m3.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is 

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip 

surface is assumed to not converge.
 
 Output is the converged FS value for the given failure surface.  If 

convergence is not achieved, or the slip is not admissable, then 99999 
is returned for FS.  The CoDE engine then evolves the slip surface to 
avoid inadmissable or non-computable surfaces.

 */
+(float)analyzerEngineCircSlipPoints:(RealMatrix *)slipPoints gammaWater:
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(float)gammaWater nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:
(RealMatrix *)edgeLines materials:(RealMatrix *)materials phreaticLine:
(RealMatrix *)phreaticLine myPrecision:(float)myPrecision maxIteration:
(unsigned int)maxIteration; 

{ }

/**
 This function is the circular workhorse of the app.  It takes an initial 

population of "pos" vectors that define slip circles, then it generates 
failure surfaces for those vectors, and evaluates the FS for them using 
the GLE from Fredlund and Krahn.  This is the single-threaded function.

 
 Input Parameters:
 RealMatrix *pos: Matrix of "pos" row vectors.  The first two values in the 

row are the entry and exit x values, then the rest of the values are 
the vertical placement of the vertex between 0 and 1.

 unsigned int noSlice: This is the number of slices for each slip surface.
 int maxRFactor: This is the maximum radius multiplier that is allowed for 

the circle.
 float tolSlicing: Minimum width of a slice before it is removed.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 float myPrecision: Decimal representing precision at which convergence is 

assumed to have occurred.
 unsigned int maxIteration: Maximum number of iterations before the slip 

surface is assumed to not converge.
 RealMatrix *ground: Matrix of (x,y) row vectors representing the top of the 

cross section.
 Realmatrix *bedrock: Matrix of (x,y) row vectors representing the bottom of 

the cross section.
 float gammaWater: Specific weight of water.  Units of kN/m3.
 NSMutableArray *layersCord: Array of polygons defining stratigraphic layers

.  Each polygon is a RealMatrix with (x,y) row vector.
 completionBlock: This is an Objective-C block to execute upon completion of 

FS evaluations.  This is here to retain the same method signature 
between the single-threaded and multithreaded versions of this function
.

 
 Output is stored in the FSSlipPointsController singleton as an array of FS 

values, and an array of RealMatrix slip points.
 */
+(void)FSsEvalCircPos:(RealMatrix *)pos axisPoint:(CGPoint)axisPoint 

noSlice:(unsigned int)noSlice maxRFactor:(int)maxRFactor tolSlicing:
(float)tolSlicing nonEdgeLines:(RealMatrix *)nonEdgeLines edgeLines:
(RealMatrix *)edgeLines materials:(RealMatrix *)materials phreaticLine:
(RealMatrix *)phreaticLine myPrecision:(float)myPrecision maxIteration:
(unsigned int)maxIteration ground:(RealMatrix *)ground bedrock:
(RealMatrix *)bedrock gammaWater:(float)gammaWater layersCord:
(NSMutableArray *)layersCord completionBlock:(void (^)())completionBlock
;
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{ }

#pragma mark - Circular Slice Info Functions

/**
 This function builds the sliceInfo matrix which contains the relevant 

parameters for each slice.
 
 Input Parameters:
 float gammaWater: Specific weight of water.  Units of kN/m3.
 RealMatrix *slipPoints: Matrix representation of the slipPoints that define 

the failure surface.  Matrix of (x,y) row-vectors.
 RealMatrix *nonEdgeLines: Matrix of (x,y) row-vectors that define the outer 

boundaries of the slope.
 RealMatrix *edgeLines: Matrix of (x,y) row-vectors that define the 

boundaries between stratigraphic units inside of the slope.
 RealMatrix *materials: Matrix of material properties.  Each material is a 

column vector.
 RealMatrix *phreaticLine: Matrix of (x,y) row-vectors that define the path 

of the phreatic surface within the slope.
 
 Output is the sliceInfo matrix that contains rows in this order: 

sliceWeight, sliceAlpha, sliceCohesion, sliceWidth, sliceFrictionAngle, 
sliceU.

 */
+(RealMatrix *)sliceInfoBuilderv2CircGammaWater:(float)gammaWater 

slipPoints:(RealMatrix *)slipPoints nonEdgeLines:(RealMatrix *)
nonEdgeLines edgeLines:(RealMatrix *)edgeLines materials:(RealMatrix *)
materials phreaticLine:(RealMatrix *)phreaticLine;

{ }

/**
 This method refines the mesh of slices.  It starts by adding slices at 

important locations such as where the slip surface crosses 
stratigraphic boundaries.  Then it ensures that the slip surfaces have 
vertices wherever strata above them contain discontinuities.  Finally, 
picks the biggest slice and splits it until it reaches the specified 
number of slices (noSlice).

 
 Input Parameters:
 NSMutableArray *layersCord: Array of RealMatrix objects which define the 

stratigraphic elements in the cross section as polygons.  Each 
RealMatrix has (x,y) row vectors.

 RealMatrix *origSlipPoints: Original matrix of slip points that compose the 
failure surface.  (x,y) row vectors.

 float tolSlicing: The smallest allowed slice width.  Any smaller, and the 
slice is removed from the slip surface.

 
 Output is the matrix defining the new slip surface with the added points.
 */
+(RealMatrix *)moreSlicesCircLayersCord:(NSMutableArray *)layersCord 

slipPoints:(RealMatrix *)origSlipPoints tolSlicing:(float)tolSlicing;
{ }

@end
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