WARNING – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

• This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
• The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
• To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker-Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed “Offer of Sale” elsewhere in this document or available at www.parker.com/hydraulicvalve.

SAFETY GUIDE

For safety information, see Safety Guide SG HY14-1000 at www.parker.com/safety or call 1-800-CParker.

© Copyright 2007, Parker Hannifin Corporation, All Rights Reserved
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Typical Electrohydraulic Servovalve Design Features</td>
<td>2</td>
</tr>
<tr>
<td>Series DY1S</td>
<td>3 - 5</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>3</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>4</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>5</td>
</tr>
<tr>
<td>Series DY3H and DY6H</td>
<td>6 - 9</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>6</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>7</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>8</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>9</td>
</tr>
<tr>
<td>Series DY05</td>
<td>10 - 13</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>10</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>11</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>12</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>13</td>
</tr>
<tr>
<td>Series DY10</td>
<td>14 - 17</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>14</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>15</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>16</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>17</td>
</tr>
<tr>
<td>Series DY12</td>
<td>18 - 21</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>18</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>19</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>20</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>21</td>
</tr>
<tr>
<td>Series DY15</td>
<td>22 - 25</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>22</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>23</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>24</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>25</td>
</tr>
<tr>
<td>Series DY25</td>
<td>26 - 29</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>26</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>27</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>28</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>29</td>
</tr>
<tr>
<td>Series DY45</td>
<td>30 - 33</td>
</tr>
<tr>
<td>Technical Information, Features, Specifications</td>
<td>30</td>
</tr>
<tr>
<td>Ordering Information, Accessories</td>
<td>31</td>
</tr>
<tr>
<td>Performance Curves, Wiring Installation</td>
<td>32</td>
</tr>
<tr>
<td>Dimensions, Mounting Interface</td>
<td>33</td>
</tr>
<tr>
<td>Terms of Sale with Warranty Limitations</td>
<td>34 - 37</td>
</tr>
<tr>
<td>Safety Guide</td>
<td>38</td>
</tr>
</tbody>
</table>

HY14-1483.indd, dd
Typical Electrohydraulic Servovalve Design Features

Electromechanical Torque Motor Assembly

Coil — Balance coil construction in a dust proof dry compartment.

Null Adjustment Cover

Upper Pole Piece

Electrical Connector

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Null Adjustment Cover

Electrical Connector

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.

Support Tube

End Cap

Yoke Cavity

Valve Spool — Output flow from the servovalve is controlled by the valve spool.

Armature — Rigidly supported on deflection tube.

Deflection Tube — Designed for a minimum of 10^9 cycles.

Control Shaft and Torque Motor Output Yoke

Lower Pole Piece

Nozzles — Provide variable orifices between the nozzle outlet and the torque motor output yoke.

Mechanical Feedback — Coil springs provide mechanical feedback without movable bearing surface.
General Description

Series DY1S are open center, single stage differential pressure control valves. They are operated by a current driven torque motor. These valves control the pressure difference between the two actuator ports, C1 and C2, by varying the resistance to flow through their nozzles.

Features

- No mechanical wear points.
- High frequency response.
- Nozzle and flapper design.
- Versatile 21.59 mm (0.850 in.) port circle, can mount to standard 19.81 mm (0.780 in.) and 23.62 mm (0.930 in.) port circle patterns.

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating @ 90 Bar (1300 PSI)</td>
<td>0.4 LPM (0.1 GPM)</td>
</tr>
<tr>
<td>Quiescent Flow @ 90 Bar (1300 PSI)</td>
<td>1.3 – 1.9 LPM (0.3 – 0.5 GPM)</td>
</tr>
<tr>
<td>Supply Pressure</td>
<td>7 – 90 Bar (100 – 1300 PSI)</td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>90 Bar (1300 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response @ 90° phase shift</td>
<td>> 100 Hz</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Null Shift with temperature with pressure</td>
<td>≤ 2% per 55°C (100°F) ≤ 2% per 70 Bar (1000 PSI)</td>
</tr>
<tr>
<td>Pressure Gain % change in pressure per 1% change in input command</td>
<td>1% minimum</td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 5 ms</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>
Servovalves
Series DY1S

Description
0.4 LPM (0.1 GPM)
90 Bar (1300 PSI)

Accessories
- **Cable with Mating Connector**: EHC154S
- **Mating Connector**: MS3106E-14S-2S
- **Bolt Kit**: Included with valve
- **Flushing Valve**: 11-0500
- **Subplate**: 55-0100-2 SAE-6 Side ports
- **Null Adjust Tool**: 27-0210
- **Electronic Drivers**: 23-5030, 23-7030, BD90*, BD95* and BD101*
When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Special Options:
Consult factory for price, delivery and availability of special options.
- Special coil
- Special wiring
- Special seals

Weight: 0.5 kg (1.2 lbs.)

Wiring Option C
(Standard)

Polarity shown connects P to C2 port.

Flushing valve is rated for 3000 psi operation.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface
General Description

Series DY3H and DY6H are two stage, 4-way, high frequency, closed center servovalves, with mechanical spool position feedback. These valves use a flapper and nozzle type, torque motor driven pilot stage to drive the sliding spool second stage. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves.

The DY3H and DY6H offer a compact, lower cost alternative without sacrificing performance in systems operating at 105 Bar (1500 PSI) or less.

Features

- Precision lapped spool and sleeve.
- No ball glitch.
- High frequency response.
- Nozzle and flapper design.
- Adapters available for mounting to D03 or ISO port patterns.

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating</td>
<td>11 and 22 LPM (3 and 6 GPM)</td>
</tr>
<tr>
<td>@ 70 Bar (1000 PSID)</td>
<td></td>
</tr>
<tr>
<td>Supply Pressure</td>
<td>10 – 105 Bar (145 – 1500 PSI)</td>
</tr>
<tr>
<td>Leakage Flow</td>
<td>1.3 – 1.9 LPM (0.3 – 0.5 GPM)</td>
</tr>
<tr>
<td>@ 70 Bar (1000 PSID)</td>
<td></td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>105 Bar (1500 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>> 190 Hz (See Performance Curves)</td>
</tr>
<tr>
<td>@ 90° phase shift</td>
<td></td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Null Shift</td>
<td>≤ 2% per 55°C (100°F)</td>
</tr>
<tr>
<td>with temperature with pressure</td>
<td>≤ 2% per 70 Bar (1000 PSI)</td>
</tr>
<tr>
<td>Pressure Gain</td>
<td>30% minimum, 70% maximum</td>
</tr>
<tr>
<td>% change in pressure per 1% change in input command</td>
<td></td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 6 ms for DY3H < 8 ms for DY6H</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>
Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0300
Subplate: 55-0100-2 SAE-6 Side ports
Null Adjust Tool: 27-0210
Electronic Drivers: 23-5030, 23-7030, BD90*, BD95* and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Special Options:

Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals

Weight:

<table>
<thead>
<tr>
<th>Series</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY3H</td>
<td>0.34 kg (0.56 lbs.)</td>
</tr>
<tr>
<td>DY6H</td>
<td>0.34 kg (0.56 lbs.)</td>
</tr>
</tbody>
</table>

Wiring Option C

(Standard)

Polarity shown connects P to C2 port.

Flushing valve is rated for 3000 psi operation.

Code Description

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA 25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA 40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA 100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA 75 mA</td>
</tr>
<tr>
<td>L</td>
<td>360 ohm</td>
<td>30 mA 15 mA</td>
</tr>
<tr>
<td>M</td>
<td>475 ohm</td>
<td>40 mA 20 mA</td>
</tr>
<tr>
<td>R</td>
<td>650 ohm</td>
<td>30 mA 15 mA</td>
</tr>
<tr>
<td>T</td>
<td>1000 ohm</td>
<td>10 mA 5 mA</td>
</tr>
<tr>
<td>V</td>
<td>1200 ohm</td>
<td>40 mA 20 mA</td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
</tr>
</tbody>
</table>

Code Description

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA 25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA 40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA 100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA 75 mA</td>
</tr>
<tr>
<td>L</td>
<td>360 ohm</td>
<td>30 mA 15 mA</td>
</tr>
<tr>
<td>M</td>
<td>475 ohm</td>
<td>40 mA 20 mA</td>
</tr>
<tr>
<td>R</td>
<td>650 ohm</td>
<td>30 mA 15 mA</td>
</tr>
<tr>
<td>T</td>
<td>1000 ohm</td>
<td>10 mA 5 mA</td>
</tr>
<tr>
<td>V</td>
<td>1200 ohm</td>
<td>40 mA 20 mA</td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
</tr>
</tbody>
</table>
Performance Curves

Flow vs. Pressure Drop
at 100% command
Flow Path: P → C1 → C2 → T

![Graph showing flow vs. pressure drop](image)

Installation Wiring Options
This servovalve has two coils. This illustration shows the internal wiring configurations for these valves. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustration below and to the mounting pattern for this valve to insure proper control phasing.

![Wiring diagrams for parallel and series connections](image)

Polarity shown connects flow from P to C2 port.

Frequency Response

![Frequency response graphs for DY3H and DY6H](image)
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface
General Description
Series DY01 are two stage, 4-way, flapper and nozzle style servovalves. The DY01 servovalve combines a spool and sleeve construction, and a high frequency torque motor, for optimal performance. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. This valve is rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stainless steel spool and body.

The DY01 servovalve was specially designed for high precision flight simulator applications.

Features
- Precision lapped spool and sleeve.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Versatile 21.59 mm (0.850 in.) port circle, can mount to standard 19.81 mm (0.780 in.) and 23.62 mm (0.930 in.) port circle patterns.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating</td>
<td>3 and 11 LPM (1 and 3 GPM)</td>
</tr>
<tr>
<td>@ 70 Bar (1000 PSID)</td>
<td></td>
</tr>
<tr>
<td>Supply Pressure</td>
<td>10 – 210 Bar (145 – 3000 PSI) opt. 350 Bar (5000 PSI)</td>
</tr>
<tr>
<td>Leakage Flow</td>
<td>0.42 – 0.95 LPM (0.11 – 0.25 GPM)</td>
</tr>
<tr>
<td>@ 70 Bar (1000 PSID)</td>
<td></td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>> 180 Hz (See Performance Curves)</td>
</tr>
<tr>
<td>@ 90° phase shift</td>
<td></td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Null Shift</td>
<td></td>
</tr>
<tr>
<td>with temperature</td>
<td>≤ 2% per 55°C (100°F)</td>
</tr>
<tr>
<td>with pressure</td>
<td>≤ 2% per 70 Bar (1000 PSI)</td>
</tr>
<tr>
<td>Pressure Gain</td>
<td>30% Minimum, 70% Maximum</td>
</tr>
<tr>
<td>% change in pressure per 1% change in input command</td>
<td></td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 8 ms</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>
Servovalves
Series DY01

Code Description

- **A**: Steel (standard)
- **B**: Stainless Steel
- **Z***: Special (specify)

Material selection does not affect operating pressure.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA</td>
<td>25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA</td>
<td>75 mA</td>
</tr>
<tr>
<td>L</td>
<td>360 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>M</td>
<td>475 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>R</td>
<td>750 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>T</td>
<td>1000 ohm</td>
<td>10 mA</td>
<td>5 mA</td>
</tr>
<tr>
<td>V</td>
<td>1200 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code Connector over: Flow P to C2 with:

- **C**: Port C1 (+) Signal to A, C
- **D**: Port C1 (+) Signal to B, D
- **Z**: Special (specify)

Accessories

- **Cable with Mating Connector**: EHC154S
- **Mating Connector**: MS3106E-14S-2S
- **Bolt Kit**: Included with valve
- **Flushing Valve**: 11-0500
- **Subplate**: 55-0100-8 SAE-8 Side ports
- **Null Adjust Tool**: 27-0210
- **Electronic Drivers**: 23-5030, 23-7030, BD90*, BD95* and BD101*

For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Wiring Option C (Standard)

Polarity shown connects P to C2 port.

Wiring Option D

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers

Weight:

1.0 kg (2.1 lbs.)
Performance Curves

DY01 Flow vs. Pressure Drop
- at 100% command
- Flow Path: P → C1 → C2 → T

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C
- Parallel

Option D
- Series

Polarity shown connects flow from P to C2 port.

Performance Curves

Frequency Response

DY01 at 3000 PSI
- ± 10% Amplitude
- ± 40% Amplitude

Phase lag (degrees)
- Amplitude ratio (dB)

Pressure Drop

Flow

A	B	C	D
14 | 200 | 41 | 69 | 138 | 345

Frequency (Hz)

0 | 5 | 10 | 15 | 20 | 25 | 30 | 35

Polarization

No load curves at rated flow
Dimensions
Inch equivalents for millimeter dimensions are shown in (""").

Mounting Interface
General Description

Series DY05 are two stage, 4-way, flapper and nozzle style servovalves. The DY05 has a wide range of flow ratings within a lower cost spool and body design. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stainless steel spool and body.

Features

- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Versatile 21.59 mm (0.850 in.) port circle, can mount to standard 19.81 mm (0.780 in.) and 23.62 mm (0.930 in.) port circle patterns.
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating @ 70 Bar (1000 PSID)</td>
<td>0.95, 1.9, 3.8, 9.5 and 19 LPM (0.25, 0.5, 1.0, 2.5 & 5 GPM)</td>
</tr>
<tr>
<td>Supply Pressure @ 70 Bar (1000 PSID)</td>
<td>10 – 210 Bar (145 – 3000 PSI) opt. 350 Bar (5000 PSI)</td>
</tr>
<tr>
<td>Leakage Flow @ 70 Bar (1000 PSID)</td>
<td>0.42 – 0.95 LPM (0.11 – 0.25 GPM)</td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response @ 90° phase shift</td>
<td>> 100 Hz (See Performance Curves)</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Null Shift with temperature with pressure</td>
<td>≤ 2% per 55°C (100°F) ≤ 2% per 70 Bar (1000 PSI)</td>
</tr>
<tr>
<td>Pressure Gain</td>
<td>30% minimum, 70% maximum</td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 11 ms</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to +106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>
Servovalves
Series DY05

DY05

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA</td>
<td>25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA</td>
<td>75 mA</td>
</tr>
<tr>
<td>L</td>
<td>360 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>M</td>
<td>475 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>R</td>
<td>750 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>T</td>
<td>1000 ohm</td>
<td>10 mA</td>
<td>5 mA</td>
</tr>
<tr>
<td>V</td>
<td>1200 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Code Connector over: Flow P to C2 with:

- C Port C1 (+) Signal to A, C
- D Port C1 (+) Signal to B, D
- Z Special (specify)

Accessories

Cable with Mating Connector: EHC154S

Mating Connector: MS3106E-14S-2S

Bolt Kit: Included with Valve

Flushing Valve: 11-0500

Subplate: 55-0100-8 SAE-8 Side ports

Null Adjust Tool: 27-0210

Electronic Drivers: 23-5030, 23-7030, BD90*, BD95*, and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Special Options:

Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers
- High frequency torque motor (Models 5, 10, 12 & 15 only)

Wiring Option C

(Standard)

Wiring Option D

Moog, Atchley and Vickers standard.

In both cases, polarity shown connects P to C2 port.
Performance Curves

DY05 Flow vs. Pressure Drop
at 100% command
Flow Path: P → C1 → C2 → T

Frequency Response

DY05 at 3000 PSI
All curves ± 40% Amplitude

Installation Wiring Options
This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C2 port.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)
Servovalves

Series DY10

General Description

Series DY10 are two stage, 4-way, flapper and nozzle style servovalves. The DY10 is a higher flow version of the DY05. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stainless steel spool and body.

Features

- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Versatile 21.59 mm (0.850 in.) port circle, can mount to standard 19.81 mm (0.780 in.) and 23.62 mm (0.930 in.) port circle patterns.
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Flow Rating</th>
<th>28 and 38 LPM (7.5 and 10 GPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Pressure</td>
<td>10 – 210 Bar (145 – 3000 PSI) Opt. 350 Bar (5000 PSI)</td>
</tr>
<tr>
<td>Leakage Flow</td>
<td>0.57 – 1.1 LPM (0.15 – 0.3 GPM)</td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>> 100 Hz (See Performance Curves)</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Null Shift</th>
<th>≤ 2% per 55°C (100°F) ≤ 2% per 70 Bar (1000 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Gain</td>
<td>% change in pressure per 1% change in input command 30% minimum, 70% maximum</td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 13 ms</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>

[Image of the servovalve and its schematic diagram]
Servovalves
Series DY10

DY10

Series
- Material Options
- Coils
- Wiring
- Seals
- Operating Pressure
- Flows
- Special Options
- Factory Code for Special Options

Code

Description
- A Steel (standard)
- B Stainless Steel
- Z* Special (specify)

* Material selection does not affect operating pressure.

Code

Description
- D (Specify) See list below

Code

Description
- Omit Standard

- **Code**
 - **Description**
 - D (Specify) See list below

Code

Description
- 7.5 28 LPM (7.5 GPM)
- 10 38 LPM (10 GPM)

Operating pressure is independent of material selection.

Code

Description
- N Nitrile (standard)
- V Fluorocarbon
- E* EPR
- Z Special (specify)

* Consult factory for delivery

Accessories

Cable with Mating Connector: EHC154S

Mating Connector: MS3106E-14S-2S

Bolt Kit: Included with valve

Flushing Valve: 11-0500

Subplate: 55-0100-8 SAE-8 Side ports

Null Adjust Tool: 27-0210

Electronic Drivers: 23-5030, 23-7030, BD90*, BD95* and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Special Options:
Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers
- High frequency torque motor (Models 5, 10, 12 & 15 only)

Wiring Option C
(Standard)

Moog, Atchley and Vickers standard.

Wiring Option D

In both cases, polarity shown connects P to C2 port.

Flushings are rated for 3000 psi operation.
Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Polarity shown connects flow from P to C2 port.
Dimensions
Inch equivalents for millimeter dimensions are shown in (\text{**})

Mounting Interface

Connector over port C1
General Description

Series DY12 are two stage, 4-way, flapper and nozzle style servovalves. They have the same port pattern and body as the DY10 valve, but have a longer spool stroke for higher flow. The unique rigid pin feedback design avoids ball glitch problems, which can occur in other types of servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stainless steel spool and body.

Features
- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Nozzle and flapper design.
- Versatile 21.59 mm (0.850 in.) port circle, can mount to standard 19.81 mm (0.780 in.) and 23.62 mm (0.937 in.) port circle patterns.
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Flow Rating @ 70 Bar (1000 PSID)</th>
<th>Supply Pressure</th>
<th>Leakage Flow @ 70 Bar (1000 PSID)</th>
<th>Tank Port Pressure</th>
<th>Pressure Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 and 57 LPM (12.5 and 15 GPM)</td>
<td>10 – 210 Bar (145 – 3000 PSI) opt. 350 Bar (5000 PSI)</td>
<td>0.57 – 1.1 LPM (0.15 – 0.3 GPM)</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
<td></td>
</tr>
<tr>
<td>Null Shift with temperature with pressure</td>
<td>≤ 2% per 55°C (100°F) ≤ 2% per 70 Bar (1000 PSI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Gain % change in pressure per 1% change in input command</td>
<td>30% minimum, 70% maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 13 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-Linearity: ≤ 10%
Threshold: ≤ 0.5%
Frequency Response @ 90° phase shift: > 100 Hz (See Performance Curves)
Servovalves
Series DY12

DY12

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA</td>
<td>25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA</td>
<td>75 mA</td>
</tr>
<tr>
<td>L</td>
<td>360 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>M</td>
<td>475 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>R</td>
<td>750 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>T</td>
<td>1000 ohm</td>
<td>10 mA</td>
<td>5 mA</td>
</tr>
<tr>
<td>V</td>
<td>1200 ohm</td>
<td>40 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Z*</td>
<td>Special (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Material selection does not affect operating pressure.

Code Connector over: Flow P to C2 with:
- C Port C1 (+) Signal to A, C
- D Port C1 (+) Signal to B, D
- Z* Special (specify)

Accessories

Cable with Mating Connector: EHC154S
Mating Connector: MS3106E-14S-2S
Bolt Kit: Included with valve
Flushing Valve: 11-0500
Subplate: 55-0100-8 SAE-8 Side ports
Null Adjust Tool: 27-0210
Electronic Drivers: 23-5030, 23-7030, BD90*, BD95* and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Weight: 1.0 kg (2.1 lbs.)

Special Options:
Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers
- High frequency torque motor (Models 5, 10, 12 & 15 only)

Wiring Option C
(Standard)

Moog, Atchley and Vickers standard.

Wiring Option D

Dyval and Pegasus standard.

In both cases, polarity shown connects P to C2 port.
Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for these valves. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustration below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C2 port.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface
General Description

Series DY15 are two stage, 4-way, flapper and nozzle style servovalves. This valve is rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction or the optional stain- less steel spool and body.

Features

- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Nozzle and flapper design.
- Unique port pattern (see next page).
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating @ 70 Bar</td>
<td>57, 75 and 95 LPM (15, 20 and 25 GPM)</td>
</tr>
<tr>
<td>Supply Pressure</td>
<td>10 – 210 Bar (145 – 3000 PSI) opt. 350 Bar (5000 PSI)</td>
</tr>
<tr>
<td>Leakage Flow @ 70 Bar</td>
<td>0.95 – 1.7 LPM (0.25 – 0.45 GPM)</td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. 10 Bar (145 PSI) Max. for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response @ 90°</td>
<td>> 45 Hz (See Performance Curves)</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
<tr>
<td>Null Shift</td>
<td>≤ 2% per 55°C (100°F) with pressure</td>
</tr>
<tr>
<td>Pressure Gain</td>
<td>30% minimum, 70% maximum % change in pressure per 1% change in input command</td>
</tr>
<tr>
<td>Step Response</td>
<td>10 – 90%, < 18 ms < 18 ms up to 75 LPM (20 GPM) < 20 ms up to 95 LPM (25 GPM)</td>
</tr>
<tr>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-1°C to +106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
</tr>
</tbody>
</table>
Servovalves
Series DY15

DY15

Series

- Material Options
- Coils
- Wiring
- Seals
- Operating Pressure
- Flows
- Special Options

Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Steel (standard)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Stainless Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z*</td>
<td>Special (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Material selection does not affect operating pressure

Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Flow P to C2 with:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Port C1 (+) Signal to A, C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Port C1 (+) Signal to B, D</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
</tr>
</tbody>
</table>

Accessories

- **Cable with Mating Connector:** EHC154S
- **Mating Connector:** MS3106E-14S-2S
- **Bolt Kit:** Included with valve
- **Flushing Valve:** 11-0600
- **Subplate:** 55-0300-2 SAE-16 Side ports
- **Null Adjust Tool:** 27-0210
- **Electronic Drivers:** 23-5030, 23-7030, BD90*, BD95* and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Flushing valve is rated for 3000 psi operation.

Weight: 1.8 kg (3.9 lbs.)

Special Options:

Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers
- High frequency torque motor (Models 5, 10, 12 & 15 only)

Wiring Option C

Wiring Option D

- Dyval and Pegasus standard.

* In both cases, polarity shown connects P to C2 port.
Performance Curves

 DY15 Flow vs. Pressure Drop
 at 100% command
 Flow Path: P → C1 → C2 → T

Frequency Response

 DY15
 All curves ± 40% Amplitude

Installation Wiring Options

This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C2 port.
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface
General Description
Series DY25 are two stage, 4-way, flapper and nozzle style servovalves. They have the same port pattern and body dimensions as the DY15, but use a higher force torque motor pilot. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction, and the optional stainless steel spool and body.

Features
- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Nozzle and flapper design.
- Unique port pattern (see next page).
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Flow Rating @ 70 Bar (1000 PSID)</th>
<th>57 and 75 LPM (25 and 30 GPM)</th>
<th>Null Shift with temperature with pressure</th>
<th>≤ 2% per 55°C (100°F) ≤ 2% per 70 Bar (1000 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Pressure</td>
<td>10 – 210 Bar (145 – 3000 PSI)</td>
<td>Presssure Gain % change in pressure per 1% change in input command</td>
<td>30% minimum, 70% maximum</td>
</tr>
<tr>
<td>Leakage Flow @ 70 Bar (1000 PSID)</td>
<td>0.95 – 1.7 LPM (0.25 – 0.45 GPM)</td>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
<td>Step Response</td>
<td>10 – 90%, < 18 ms @ 95 LPM (25 GPM) < 20 ms @ 114 LPM (30 GPM)</td>
</tr>
<tr>
<td>Frequency Response @ 90° phase shift</td>
<td>> 35 Hz (See Performance Curves)</td>
<td>Fluid</td>
<td>Mineral Oil, 60 – 225 SSU 1000 SSU maximum</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
<td>Operating Temperature</td>
<td>-1°C to + 106°C (+30°F to +225°F)</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
<td>Protection Class</td>
<td>NEMA 4, IP65</td>
</tr>
<tr>
<td>Filtration</td>
<td>ISO 4406 15/12 or better</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Servovalves
Series DY25

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA 25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA 40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA 100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA 75 mA</td>
</tr>
<tr>
<td>R</td>
<td>750 ohm</td>
<td>30 mA 15 mA</td>
</tr>
</tbody>
</table>

* Material selection does not affect operating pressure

Accessories

- **Cable with Mating Connector:** EHC154S
- **Mating Connector:** MS3106E-14S-2S
- **Bolt Kit:** Included with valve
- **Flushing Valve:** 11-0600
- **Subplate:** 55-0300-2 SAE-16 Side ports
- **Null Adjust Tool:** 27-0210
- **Electronic Drivers:** 23-5030, 23-7030, BD90*, BD95*, and BD101*

 When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

 * For output currents >15 mA

- **Flushing Valve:** 11-0600
- **Subplate:** 55-0300-2 SAE-16 Side ports
- **Null Adjust Tool:** 27-0210

- **Electronic Drivers:** 23-5030, 23-7030, BD90*, BD95*, and BD101*

 When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

 * For output currents >15 mA

Wiring Options

Wiring Option C (Standard)

Moog, Atchley and Vickers standard.

Wiring Option D

Dyval and Pegasus standard.

* In both cases, polarity shown connects P to C2 port.

HY14-1483.indd dd

Parker Hannifin Corporation
Hydraulic Valve Division
Elyria, Ohio, USA
Performance Curves

DY25 Flow vs. Pressure Drop
at 100% command
Flow Path: P → C1 → C2 → T

Installation Wiring Options
This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user’s external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to ensure proper control phasing.

Option C

Polarity shown connects flow from P to C2 port.

Option D
Dimensions
Inch equivalents for millimeter dimensions are shown in (**)

Mounting Interface
General Description

Series DY45 are two stage, 4-way, flapper and nozzle style servovalves. These valves are rated for 210 Bar (3000 PSI) standard, or can be built for 350 Bar (5000 PSI) service. The pressure ratings are the same for both the tool steel construction, and the optional stainless steel spool and body.

Features

- Lapped spool and body.
- No ball glitch.
- Tool steel, or stainless steel, spool and body.
- Nozzle and flapper design.
- Unique port pattern (see mounting pattern).
- Survives high tank port pressures.

Specifications

<table>
<thead>
<tr>
<th>Flow Rating @ 70 Bar (1000 PSID)</th>
<th>150, 190 and 225 LPM (40, 50 and 60 GPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Pressure</td>
<td>10 – 210 Bar (145 – 3000 PSI) opt. 350 Bar (5000 PSI)</td>
</tr>
<tr>
<td>Leakage Flow @ 70 Bar (1000 PSID)</td>
<td>1.3 – 2.7 LPM (0.35 – 0.70 GPM)</td>
</tr>
<tr>
<td>Tank Port Pressure</td>
<td>210 Bar (3000 PSI) Max. < 10 Bar (145 PSI) for best performance</td>
</tr>
<tr>
<td>Input Command</td>
<td>±50 mA std.</td>
</tr>
<tr>
<td>Frequency Response @ 90° phase shift</td>
<td>> 30 Hz at ±10% amplitude</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>≤ 10%</td>
</tr>
<tr>
<td>Threshold</td>
<td>≤ 0.5%</td>
</tr>
</tbody>
</table>

Null Shift with temperature with pressure	≤ 2% per 55°C (100°F)
	≤ 2% per 70 Bar (1000 PSI)
Presssure Gain % change in pressure per 1% change in input command	30% minimum, 70% maximum
Step Response	10 – 90%, < 25 ms
Fluid	Mineral Oil, 60 – 225 SSU 1000 SSU maximum
Operating Temperature	-1°C to + 106°C (+30°F to +225°F)
Protection Class	NEMA 4, IP65
Filtration	ISO 4406 15/12 or better
Servovalves

Series DY45

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Parallel</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>200 ohm (Std.)</td>
<td>50 mA</td>
<td>25 mA</td>
</tr>
<tr>
<td>F</td>
<td>80 ohm</td>
<td>80 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>G</td>
<td>22 ohm</td>
<td>200 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td>K</td>
<td>40 ohm</td>
<td>150 mA</td>
<td>75 mA</td>
</tr>
<tr>
<td>R</td>
<td>750 ohm</td>
<td>30 mA</td>
<td>15 mA</td>
</tr>
<tr>
<td>Z</td>
<td>Special (specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material selection does not affect operating pressure.

- **Code Connector over:**
 - C Port C1 (+) Signal to A, C
 - D Port C1 (+) Signal to B, D
 - Z Special (specify)

- **Flow P to C2 with:**
 - (+) Signifies direction of flow.

Accessories

- **Cable with Mating Connector:** EHC154S
- **Mating Connector:** MS3106E-14S-2S
- **Bolt Kit:** Included with valve
- **Flushing Valve:** 11-0700
- **Subplate:** 55-0200-2 SAE-24 Side ports
- **Null Adjust Tool:** 27-0210
- **Electronic Drivers:** 23-5030, 23-7030, BD90*, BD95* and BD101*

When used in conjunction with Series BD90/95 and BD101 servo amplifiers or a motion controller, Series BD valves will provide accurate control of rotary and linear actuators.

* For output currents >15 mA

Weight: .3 kg (16.0 lbs.)

Special Options:

Consult factory for price, delivery and availability of special options.

- Special coil
- Special wiring
- Special seals
- Special flow rate
- Dual flow rate
- Dual gain
- Zener barriers

Wiring Option C (Standard)

Moog, Atchley and Vickers standard.

Wiring Option D

Dyval and Pegasus standard.

In both cases, polarity shown connects P to C2 port.

Flushing valve is rated for 3000 psi operation.
Performance Curves

DY45 Flow vs. Pressure Drop
at 100% command
Flow Path: P → C1 → C2 → T

Installation Wiring Options
This servovalve has two coils. This illustration shows the internal wiring configurations for options C and D. When connecting the valve to a drive amplifier, the user's external wiring may put the coils either in parallel or in series as needed. Refer to the illustrations below and to the mounting pattern for this valve to insure proper control phasing.

Option C

Option D

Polarity shown connects flow from P to C2 port.
Dimensions
Inch equivalents for millimeter dimensions are shown in ("")

Mounting Interface

Connector over C1 port

Technical Information
Series DY45
Offer of Sale

The items described in this document and other documents or descriptions provided by Parker Hannifin Corporation, its subsidiaries and its authorized distributors are hereby offered for sale at prices to be established by Parker Hannifin Corporation, its subsidiaries and its authorized distributors. This offer and its acceptance by any customer ("Buyer") shall be governed by all of the following Terms and Conditions. Buyer's order for any such items, when communicated to Parker Hannifin Corporation, its subsidiary or an authorized distributor ("Seller") verbally or in writing, shall constitute acceptance of the terms and conditions stated herein.

1. Terms and Conditions of Sale: All descriptions, quotations, proposals, offers, acknowledgments, acceptances and sales of Seller's products are subject to and shall be governed exclusively by the terms and conditions stated herein. Buyer's acceptance of any offer to sell is limited to these terms and conditions. Any terms or conditions in addition to, or inconsistent with those stated herein, proposed by Buyer in any acceptance of an offer by Seller, are hereby rejected. To no such additional, different or inconsistent terms and conditions shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller. Seller's acceptance of any offer to purchase by Buyer is expressly conditional upon Buyer's assent to all the terms and conditions stated herein, including any terms in addition, or inconsistent with those contained in Buyer's offer. Acceptance of Seller's products shall in all events constitute such assent.

2. Payment: Payment shall be made by Buyer not less than 30 days from the date of delivery of the items purchased hereunder. Amounts not timely paid shall bear interest at the maximum rate permitted by law for each month or portion thereof that the Buyer is late in making payment. Any claims by Buyer for omissions or shortages in a shipment shall be waived unless Buyer receives notice thereof within 30 days after Buyer's receipt of the shipment.

3. Delivery: Unless otherwise provided on the face hereof, delivery shall be made F.O.B. Seller's plant. Regardless of the method of delivery, however, risk of loss shall pass to Buyer upon Seller's delivery to a carrier. Any delivery dates shown are approximate only and Seller shall have no liability for any delays in delivery.

4. Warranty: Seller warrants that the items sold hereunder shall be free from defects in material or workmanship for a period of 18 months from date of shipment from Parker Hannifin Corporation. THIS WARRANTY COMPRIS ES THE SOLE AND ENTIRE WARRANTY PERTAINING TO ITEMS PROVIDED HEREUNDER. SELLER MAKES NO OTHER WARRANTY, GUARANTEE, OR REPRESENTATION OF ANY KIND WHATSOEVER, INCLUDING BUT NOT LIMITED TO, MERCHANTABILITY AND FITNESS FOR PURPOSE, WHETHER EXPRESS, IMPLIED, OR ARISING BY OPERATION OF LAW, TRADE USAGE, OR COURSE OF DEALING ARE HEREBY DISCLAIMED. NOTWITHSTANDING THE FOREGOING, THERE ARE NO WARRANTIES WHATSOEVER ON ITEMS BUILT OR ACQUIRED WHOLLY OR PARTIALLY, TO BUYER'S DESIGNS OR SPECIFICATIONS.

5. Limitation Of Remedy: SELLER'S LIABILITY ARISING FROM OR IN ANY WAY CONNECTED WITH THE ITEMS SOLD OR THIS CONTRACT SHALL BE LIMITED EXCLUSIVELY TO REPAIR OR REPLACEMENT OF THE ITEMS SOLD OR REFUND OF THE PURCHASE PRICE PAID BY BUYER, AT SELLER'S SOLE OPTION, IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES OF ANY KIND OR NATURE WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOST PROFITS ARISING FROM OR IN ANY WAY CONNECTED WITH THIS AGREEMENT OR ITEMS SOLD HEREUNDER, WHETHER ALLEGED TO ARISE FROM BREACH OF CONTRACT, EXPRESS OR IMPLIED WARRANTY, OR IN TORT, INCLUDING WITHOUT LIMITATION, NEGLIGENCE, FAILURE TO WARN OR STRICT LIABILITY.

6. Changes, Reschedules and Cancellations: Buyer may request to modify the designs or specifications for the items sold hereunder as well as the quantities and delivery dates thereof, or may request to cancel all or part of this order, however, no such requested modification or cancellation shall become part of the contract between Buyer and Seller unless expressly accepted in writing by Seller in a written amendment to this Agreement. Acceptance of any such requested modification or cancellation shall be at Seller's discretion, and shall be upon such terms and conditions as Seller may require.

7. Special Tooling: A tooling charge may be imposed for any special tooling, including without limitation, dies, fixtures, molds and patterns, acquired to manufacture items sold pursuant to this contract. Such special tooling shall be and remain Seller's property notwithstanding payment of any charges by Buyer. In no event will Buyer acquire any interest in apparatus belonging to Seller which is utilized in the manufacture of the items sold hereunder, even if such apparatus has been specially converted or adapted for such manufacture and notwithstanding any charges paid by Buyer. Unless otherwise agreed, Seller shall have the right to alter, discard or otherwise dispose of any special tooling or other property in its sole discretion at any time.

8. Buyer's Property: Any designs, tools, patterns, materials, drawings, confidential information or equipment furnished by Buyer or any other items which become Buyer's property, may be considered obsolete and may be destroyed by Seller after two (2) consecutive years have elapsed since Buyer's last order for different and for the same items which are manufactured using such property, Seller shall not be responsible for any loss or damage to such property while it is in Seller's possession or control.

9. Taxes: Unless otherwise indicated on the face hereof, all prices and charges are exclusive of excise, sales, use, property, occupational or like taxes which may be imposed by any taxing authority upon the manufacture, sale or delivery of the items sold hereunder. If any such taxes must be paid by Seller or if Seller is liable for the collection of such tax, the amount thereof shall be in addition to the amounts for the items sold. Buyer agrees to pay all such taxes or to reimburse Seller therefore upon receipt of its invoice. If Buyer claims exemption from any sales, use or other tax, Buyer shall be bound by any such tax allowing or withholding argued in an action brought against Buyer based on an allegation that an item sold pursuant to this contract infringes the Intellectual Property Rights of a third party. Seller's obligation to defend and indemnify Buyer is contingent on Buyer notifying Seller within ten (10) days after Buyer becomes aware of such allegations of infringement, and Seller having sole control over the defense of any allegations or actions including all negotiations for settlement or compromise. If an item sold hereunder is subject to a claim that it infringes the Intellectual Property Rights of a third party, Seller may, at its sole expense and option, procure for Buyer the right to continue using said item, replace or modify said item so as to make it noninfringing, or offer to accept return of said item and return the purchase price less a reasonable allowance for depreciation. Notwithstanding the foregoing, Seller shall have no liability for claims of infringement based on information provided by Buyer, or directed to items delivered hereunder for which the designs are specified in whole or part by Buyer, or infringements resulting from the modification, combination or use in a system of any item sold hereunder. The foregoing provisions of this Part 10 shall constitute Seller's sole and exclusive liability and Buyer's sole and exclusive remedy for infringement of Intellectual Property Rights. If a claim is based on information provided by Buyer or if the design for an item delivered hereunder is specified in whole or in part by Buyer, Buyer shall defend and indemnify Seller for all costs, expenses or judgments resulting from any claim that such item infringes any patent, trademark, copyright, trade dress, trade secret or any similar right.

11. Force Majeure: Seller does not assume the risk of and shall not be liable for delay or failure to perform any of Seller's obligations by reason of circumstances beyond the reasonable control of Seller (hereinafter 'Events of Force Majeure'). Events of Force Majeure shall include without limitation, accidents, acts of God, strikes or labor disputes, acts, laws, rules or ordinances of government or government agency, fires, floods, delays or failures in delivery of carriers or suppliers, shortages of materials and any other cause beyond Seller's control.

12. Entire Agreement/Governing Law: The terms and conditions set forth herein, together with any amendments, modifications and any different terms or conditions expressly accepted by Seller in writing, shall constitute the entire agreement concerning the items sold hereunder and there are no oral or other representations or agreements which pertain thereto. This Agreement shall be governed in all respects by the law of the State of Ohio. No actions arising out of the sale of the items sold hereunder or this Agreement may be brought by either party more than two (2) years after the cause of action accrues.

9/91-P

Parker Hannifin Corporation
Hydraulic Valve Division
Elyria, Ohio, USA

38

Hydraulic Valve Division

Catalog HY14-1483/US

Terms of Sale with Warranty Limitations

HY14-1483.indd, dd
WARNING: Failure or improper selection or improper use of Parker Hydraulic Valve Division (HVD) Valves or related accessories (“Products”) can cause death, personal injury and property damage. Possible consequences of failure or improper use of these Products include but are not limited to:

- Valves or parts thereof thrown off at high speed
- High velocity fluid discharge
- Explosion or burning of the conveyed fluid
- Contact with suddenly moving or falling objects controlled by the Valve
- Injections by high-velocity fluid discharge
- Contact with fluid that may be hot, cold, toxic or otherwise injurious
- Injuries resulting from injection, inhalation or exposure to fluids
- Injury from handling a heavy item (dropped, awkward lift)
- Electric shock from improper handling of solenoid connections
- Injury from slip or fall on spilled or leaked fluid

Before selecting or using any of these Products, it is important that you read and follow the instructions below. In general, the Products are not approved for in-flight aerospace applications. Consult the factory for the few that are FAA approved.

1. GENERAL INSTRUCTIONS
1.1 Scope: This safety guide provides instructions for selecting and using (including assembling, installing and maintaining) these Products. For convenience all items in this guide are called “Valves”. This safety guide is a supplement to and is to be used in conjunction with the specific Parker catalogs for the specific Valves and/or accessories being considered for use. See item 1.6 below for obtaining those catalogs.
1.2 Fail-Safe: Valves can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of the Valve or Valve Assembly will not endanger persons or property.
1.3 Safety Devices: Never disconnect, override, circumvent or otherwise disable any safety lockout on any system whether powered by HVD Valves or any motion control system of any manufacturer. (e.g. Automatic shut-off on a riding lawn mower should the operator get out of the seat).
1.4 Distribution: Provide a copy of this safety guide to each person that is responsible for selecting or using HVD Valve Products. Do not select HVD Valves without thoroughly reading and understanding this safety guide as well as the specific Parker catalogs for the Products considered or selected.
1.5 User Responsibility: Due the wide variety of operating conditions and applications for Valves, HVD and its distributors do not represent or warrant that any particular Valve is suitable for any specific system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing is solely responsible for:
- Making the final selection of the Valve
- Assuring that the user’s requirements are met and that the application presents no health or safety hazards.
- Providing all appropriate health and safety warnings on the equipment on which the Valves are used.
- Assuring compliance with all applicable government and industry standards.

1.6 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the product being considered or used, or call 1-800-CPARKER, or go to www.parker.com , for the telephone numbers of the appropriate technical service department. For additional copies of this or any other Parker Safety Guide go to www.parker.com and click on the safety button on the opening page. Catalogs and/or catalog numbers for the various HVD Valve Products can be obtained by calling HVD at 440-366-5100. Phone numbers and catalog information is also available on the Parker website, www.parker.com .

2. VALVE SELECTION INSTRUCTIONS
2.1 Pressure: Valve selection must be made so that the maximum working pressure of the Valve is equal to or greater than the maximum system pressure. Surge, impulse or peak transient pressures in the system must be below the maximum working pressure of the Valve. Surge, impulse and peak pressures can usually be determined by sensitive electrical instrumentation that measures and indicates pressures at millisecond intervals. Mechanical pressure gauges indicate only average pressure and cannot be used to determine surge, impulse or peak transient pressures. Burst pressure ratings if given or known are for manufacturing purposes only and are not an indication that the Product can be used in applications at the burst pressure or otherwise above the maximum working pressure.
2.2 Temperature: The fluid temperature must be regulated or controlled so that the operating viscosity of the fluid is maintained at a level specified for the particular Valve product. Such ranges are given in the product catalogs or can be obtained from the appropriate customer service department for the particular Valve product.
2.3 Fluid Compatibility: The fluid conveyed in Valves has direct implications on the Valve selection. The fluid must be chemically compatible with the Valve component materials. Elastomer seals, brass, cast iron, aluminum for example all are potentially affected by certain fluids. Additionally, fluid selection affects the performance of various Valves. Considerations relative to fluid selection are outlined in the specific HVD Valve product catalog. Of particular importance is that the fluid be for hydraulic use, contain the proper additives and wear inhibitors. See 1.6 “Additional Questions” above for information to obtain such HVD catalogs.
2.4 Changing Fluids: If a system requires a different fluid, it should be done with the guidance in number 2.3 above. Additionally, it may be necessary to flush the system (including the Valves) to remove any of the previous fluid. Consult the Parker Valve Division for guidance.
2.5 Size: Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.
2.6 Placement: Installation of Valves must take into account the orientation of the Valve and the proximity of the Valve to other parts of the system. This includes but is not limited to closeness to hot and cold areas, access for servicing and operation as well as orientation for proper connectors.
2.7 Ports: Connection of Valves in systems can be by threaded ports, sub-base surfaces, flanges and manifolds. In all cases, the proper fitting, surface or mounting hardware must be selected to properly seal and contain the system fluid so as to avoid the adverse conditions listed in the initial warning box above. Specifically, if using threaded ports, the designer must make sure that the mating fitting is of the compatible thread. Also, the instructions provided by the connector hardware supplier must be read and understood so as to properly assemble the connector. The Parker Safety Guide for using Hose, Tubing and Fittings and Related Accessories is but one reference to this end.
2.8 Environment: Care must be taken to insure that the Valve and Valve Assemblies are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions including but not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals and air pollutants can cause degradation and premature failure.
2.9 Electric Power: For Valves requiring electric power for control, it is imperative that the electricity be delivered at the proper voltage, current and wattage requirements. To obtain the proper power requirements please refer to the respective Parker product catalog for the specific Valve that is intended for use. If further guidance is required, call the appropriate technical service department identified in the respective Parker product catalog.
2.10 Specifications and Standards: When selecting Valves, government, industry and Parker specifications and recommendations must be reviewed and followed as applicable.
2.11 Accessories: All accessories used in conjunction with any Parker Valve product must be rated to the same requirements of the Valve including but not limited to pressure, flow, material compatibility, power requirements. All of these items must be examined as stated in the “VALVE INSTALLATION INSTRUCTIONS” paragraph 3.0.

(continued on next page)
3.0 VALVE INSTALLATION INSTRUCTIONS

3.1 Component Inspection: Prior to use, a careful examination of the Valve(s) must be performed. The Valve intended for use must be checked for correct style, size, catalog number and external condition. The Valve must be examined for cleanliness, absence of external defects or gouges, cracked or otherwise deformed parts or missing items. The mounting surface or port connections must be protected and free of burrs, scratches, corrosion or other imperfections. Do NOT use any item that displays any signs of nonconformance. In addition, any accessory including but not limited to fittings, bolts, kits, hoses, sub bases, manifolds, and electrical connectors must be examined and used the same examination.

3.2 Handling Valves: Many Valves whether HVD Valves or another manufacturer can be large, bulky or otherwise difficult to handle. Care must be taken to use proper lifting techniques, tools, braces, lifting belts or other aids so as not to cause injury to the user, any other person or to property.

3.3 Filtration: Fluid cleanliness is a necessity in any hydraulic system. Fluid filters must be installed and maintained in the system to provide the required level of fluid cleanliness. Filters can be placed in the inlets, pressure lines and return lines. The level of cleanliness required is specified in the HVD product catalog for the specific Valve or system intended for use. For further selection contact Parker Filter Division at 800-253-1258 or 419-644-4311.

3.4 Servo Valves: Application of Servo Valves in general requires knowledge and awareness of “closed loop control theory” and the use of electronic controls for successful and safe operation. Individuals who do not have such experience or knowledge must gain training before use of such Products. Parker offers both classroom training as well as manuals to assist in gaining this knowledge. These aids can be obtained by contacting Hydraulic Valve Division at 440-366-5100, calling the general Parker help line 800-C PARKER or going to the Parker web site at www.parker.com.

3.5 Accessory Ratings: All accessories used in conjunction with the selected or intended Valve must be rated and compatible with the selected Valve. Specifically, the items must be of equal or greater rating including but not limited to pressure, flow, power, size, port style, thread connectors and material.

3.6 Connection Styles: It is the responsibility of the user of the Parker product to properly select connectors and accessories that match the connections on the sub plate, Valve, flange or threaded connection or manifold. It is also the responsibility of the installer to possess adequate skill and knowledge including but not limited to thread preparation, torque technique, hose assembly and inspection, tube preparation and assembly, and fitting installation. Parker Tube Fitting Division (www.parker.com/tfd) catalog 4300 and Parker Hose Products (www.parkerhose.com) catalog 4400 describe some basic technical information relative to proper fitting assembly.

3.7 Electrical Connections: All electrical connections must be made to the applicable codes and local safety requirements.

3.8 Gauges and Sensors: The user must install sufficient gauges and sensors in the system so as to be able to determine the condition of the system. This includes but is not limited to pressure gauges, flow meters, temperature sensors and site gauges. These are of utmost importance should removal or disassembly of a Valve, portion of a Valve or portion of the system become necessary. Refer to “VALVE MAINTENANCE AND REPLACEMENT INSTRUCTIONS” for details and especially item 4.8.

3.9 System Checkout: Once installed, the Valve installation must be tested to insure proper operation and that no external leakage exists. All safety equipment must be in place including but not limited to safety glasses, helmets, ear protection, splash guards, gloves, coveralls and any shields on the equipment. All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Valve maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potentially hazardous areas while testing and using.

4.0 VALVE MAINTENANCE AND REPLACEMENT INSTRUCTIONS

4.1 Maintenance Program: Even with proper installation, Valves and Valve System life may be significantly reduced without a continuing maintenance program. The severity of the application and risk potential must determine the frequency of the inspection and the replacement of the Products so that Products are replaced before any failures occur. A maintenance program must be established and followed by the user and, at a minimum, must include instructions 4.2 through 4.10. An FMEA (Failure Mode and Effects Analysis) is recommended in determining maintenance requirements.

4.2 Visual Inspection-Valves: Any of the following conditions require immediate shut down and replacement of the Valve.

- Evidence that the Valve is in partial dis-assembly.
- Visible crack or suspicion of a crack in the Valve housing or bent, cracked or otherwise damaged solenoid.
- Missing or partially extending drive pin on a flow control knob.
- Missing, loose components, obstructions or other condition impeding the motion or function of the manual knob, lever, foot pedal or other mechanical operator of a hydraulic Valve.
- Any evidence of burning or heat induced discoloration.
- Blistered, soft, degraded or loose cover of any kind.
- Loose wire or electrical connector.

4.3 Visual Inspection-Other: The following conditions must be tightened, repaired, corrected or replaced as required.

1. Fluid on the ground must be cleaned immediately. Also, the source of the fluid must be determined prior to running the equipment again.
2. Leaking port or excessive external dirt build-up.
3. System fluid level is too low or air is entrapped or visible in the reservoir.
4. A system controlled by the Valve or Valve assembly has been losing power, speed, efficiency
5. Filter Maintenance: System filters must be maintained and kept in proper working order. The main service requirement is periodic replacement of the filter element or screen. Contact Parker Filter Division at 800-253-1258 or 419-644-4311 for further filter maintenance details.

4.5 Functional Test: See “System Checkout” number 3.9 above in “VALVE INSTALLATION INSTRUCTIONS”.

4.6 Replacement Intervals: Valves and Valve Systems will eventually age and require replacement. Seals especially should be inspected and replaced at specific replacement intervals based on previous experience, government or industry recommendations, or when failures could result in unacceptable downtime, damage or injury risk. At a minimum seals must be replaced whenever service is rendered to a Valve product.

4.7 Adjustments, Control Knobs, and Other Manual Controls: System Pressure and Flow are typically adjusted by knobs and/or handles. A set-screw or lock-nut secures the adjustment device so as to maintain the desired setting. This set-screw or lock-nut must first be loosened prior to making any adjustments and re-tightened after adjustment on the HVD Valve. All adjustments must be made in conjunction with pressure gauges and/or flow meters (or by watching the speed of the actuator in the case of setting flow only). See paragraph “Gauges and Sensors” above in the section “VALVE INSTALLATION INSTRUCTIONS”. Under no circumstances should any control knob, adjustment stem, handle, foot pedal or other actuating device be forced beyond the mechanical stop(s) on the Valve. For example, the Parker Safety Notice Bulletin HY14-3310-B1/US for HVD Colorflow Valves specifically restricts the adjustment torque to “hand adjust” or “less than 10 ft/lbs” if it cannot be adjusted by hand. Failure to adhere to this may force the knob beyond the stop point allowing it to be ejected at high speed resulting in death, personal injury and property damage. For complete safety instructions on HVD Colorflow Valves, copies of Safety Notice Bulletin HY14-3310-B1/US can be obtained directly from the Hydraulic Valve Division at 440-366-5100 or from the Parker web site at www.parker.com by selecting the “Safety” button. Parker help line 800-C PARKER is on call 24/7 as well should there be any question about the use of a HVD Valve. Additionally, when making adjustments, always adjust the Valve with all parts of your body to the side of the Valve (that is, the knob is not pointing toward you or anyone else).

4.8 High Pressure Warning: Hydraulic power is transmitted by high-pressure fluids through hoses, fittings and valves, pumps and actuators. This condition can be dangerous and potentially lethal and, therefore, extreme caution must be exercised when working with fluids under pressure. From time to time, hoses, Valves, tubes or fittings may not be replaced at the failure point or stress limits. Typically, replacement is not done for failure of some form of misapplication, abuse, wear or failure to stunt proper maintenance. When such failure occurs, generally the high pressure fluid inside escapes in a stream which may or may not be visible to the user. Under no circumstances should the user attempt to locate the leak by “feeling” with their hands or any other part of their body. High-pressure fluids can and will penetrate the skin and cause severe tissue damage and possible loss of limb or life. Even seemingly minor hydraulic fluid injection injuries must be treated immediately by a physician with knowledge of the tissue damaging properties of hydraulic fluid.

If a hose, tube, fitting or Valve failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the system. Simply shutting down the pump may or may not eliminate the pressure in the system. It may take several minutes or even hours for the pressure to be relieved so that the leak area can be examined safely. Once the pressure has been reduced to zero, the suspected leaking item can be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a connector (especially a hose) or Valve that has failed. Consult the nearest Parker distributor or the appropriate Parker division for component replacement information. Never touch or examine a failed hydraulic component unless it is obvious that the item no longer contains fluid under pressure.
North America
Hydraulics Group Headquarters
6035 Parkland Boulevard
Cleveland, OH 44124-4141 USA
Tel: 216-896-3000
Fax: 216-896-4031
Parker Hannifin Canada
Motion & Control Division – Milton
160 Chisholm Drive Milton
Ontario Canada L9T 3G9
Tel: 905-693-3000
Fax: 905-876-1958
Motion & Control Division – Montreal
2001 rue de l’aviation
Dorval, Quebec, H9P 2X6
Tel: 514-684-4191
Fax: 514-684-3000
Motion & Control Division – Calgary
3141B – 16th Street N.E.
Calgary, Alberta T2E 7K8
Tel: 403-291-9284
Fax: 403-291-9285

Mobile Sales
Mobile Sales Organization
and Global Sales
595 Schelter Road
Suite 100
Lincolnshire, IL 60069 USA
Tel: 847-821-1500
Fax: 847-821-7600

Industrial Sales
Great Lakes Region
3700 Embassy Parkway Suite 260
Fairlawn, OH 44333 USA
Tel: 330-670-2680
Fax: 330-670-2681

Southern Region
1225 Old Alpharetta Road Suite 290
Alpharetta, GA 30005 USA
Tel: 770-619-9767
Fax: 770-619-9806

Chicago Region
1163 E. Ogden Avenue
Suite 705, #358
Naperville, IL 60563 USA
Tel: 630-964-0796
Fax: 666-473-9274

Pacific Region
8460 Kasa Drive
Buena Park, CA 90621
Tel: 714-228-2510
Fax: 714-228-2511

Eastern Region
100 Corporate Drive
Lebanon, NJ 08833 USA
Tel: 908-236-4121
Fax: 908-236-4146

Europe
Europe Hydraulics Group
Parker Hannifin Corporation
Parker House
55 Maylands Avenue
Hemel Hempstead, Herts
HP2 4SJ England
Tel: 44 1442 458000
Fax: 44 1442 458085

Austria
Parker Hannifin GmbH
Badener Straße 12
AT-2700 Wiener Neustadt, Austria
Tel: 43 2622-23501 970
Fax: 43 2622-23501 977

Belarus
Parker Hannifin Corporation
23, Rue du Bosquet
BE-1400 Nivelles, Belgium
Tel: 32 67 280 900
Fax: 32 67 280 999

Belgium
Parker Hannifin SA NV
ZI Sud 2
23, Rue du Bosquet
BE-1400 Nivelles, Belgium
Tel: 32 67 280 900
Fax: 32 67 280 999

Czech Republic/Slovakia
Parker Hannifin s.r.o.
Paradisova 632
CZ-250 67 Klecany, Czech Republic
Tel: 420 284 083 111
Fax: 420 284 083 112

Danmark
Parker Hannifin Denmark A/S
Industriparken 35-37
DK-2750 Ballerup, Denmark
Tel: 45 43 56 04 00
Fax: 45 43 73 31 07

Denmark
Parker Hannifin Denmark A/S
Industriparken 35-37
DK-2750 Ballerup, Denmark
Tel: 45 43 56 04 00
Fax: 45 43 73 31 07

Finland
Parker Hannifin Oy
Välistöntie 16
FI-01520 Vantaa, Finland
Tel: 358 20 753 2500
Fax: 358 20 753 2200

France
Parker Hannifin France SAS
142, rue de la Forêt
FR-741 30 Contamine sur Arve, France
Tel: 33 4-50 03 67 37
Fax: 33 4-50 03 67 37

Germany/Switzerland
Parker Hannifin GmbH & Co. KG
Pat-Parker-Platz 1
DE-41564 Kaarst, Germany
Tel: 49 (0) 2131 4016 0
Fax: 49 (0) 2131 4016 9199

Greece
Parker Hannifin Corporation
197 Symrou Av.
GR-171 21 Athens, Greece
Tel: 30030 210 933-6450
Fax: 30030 210 933-6451

Hungary
Parker Hannifin Corporation
Hungarian Trade Representative Office
Egressy u. 100
HU-1149 Budapest, Hungary
Tel: 36 1 220 4155
Fax: 36 1 422 1525

(continued on next page)
Europe

Slovenia
Parker Hannifin Corporation
Vel. Buncva vas 7
SI-8000 Novo mesto, Slovenia
Tel: 386 7 337 6650
Fax: 386 7 337 6651

Spain
Parker Hannifin España SA
P.O. Box No. 74
P.I. Las Monjas, c/Estaciones, 8
ES-28850 Torrejón de Ardoz
Madrid, Spain
Tel: 34 91-675 73 00
Fax: 34 91-675 77 11

Sweden
Parker Hannifin AB
Fagerstättagatan 51
Box 8314
SE-163 08 Spånga, Sweden
Tel: 46 8 5979 50 00
Fax: 46 8 5979 51 10

Turkey
Parker Hannifin Corporation
Merter Is Merkezi
Merter Is Merkezi
Liaison Office of Turkey
Parker Hannifin Corporation
Turkey
Fax: 46 33 13 89 40

South Africa
Parker Hannifin Africa Pty Ltd
Parker Place
10 Berne Avenue Aeroprot
P.O. Box 1153
ZA-Kempton Park 1620,
Republic of South Africa
Tel: 27 11 961 0700
Fax: 27 11 392 7213

Middle East

Egypt
Parker Hannifin Corporation
8B Zahraa Maadi
Region 17F
Cairo, Egypt
Tel: (20) 2 5194018
Fax: (20) 2 5190605

Kazakhstan
Parker Hannifin
Gateway Ventures CA Ltd, Representative
7A Kabanbai Batira
KZ-480100 Alamy, Kazakhstan
Tel: 7 3272 505 800
Fax: 7 3272 505 801

Asia Pacific

Asia Pacific Headquarters
Parker Hannifin Hong Kong Ltd
8/F, Kin Yip Plaza
9 Cheung Yee Street
HK-Cheung Sha Wan, Hong Kong
Tel: 852 2428 8008
Fax: 852 2425 6896

Australia Headquarters
Parker Hannifin Pty Ltd
9 Carrington Road
Castle Hill, NSW 2154, Australia
Tel: 61 2 9634 7777
Fax: 61 2 9842 5111

China Headquarters
Parker Hannifin Motion & Control
(Shanghai) Co., Ltd
280 Yunqiao Road,
Jin Qiao Export Processing Zone
280 Yunqiao Road,
Jin Qiao Export Processing Zone
CN-Shanghai 201206, China
Tel: 86 21 5301 2525
Fax: 86 21 5343 3714

India
Parker Hannifin India Pvt Ltd
Plot No. EL-26, MIDC, TTC Industrial Area
Mahape,
IN-Navi Mumbai 400 709, India
Tel: 91 22 5613 7081/7082/7083/7084
Fax: 91 22 2768 6841/6618

Japan
Parker Hannifin Japan Ltd
Shirokanedai Building 2nd Floor
3-2-10, Shirokanedai, Minato-ku
JP-Tokyo, 108-0071, Japan
Tel: 81 3 6408 3900
Fax: 81 3 5449 7201

Korea Headquarters
Parker Hannifin Korea Ltd
6F Daehwa Plaza
169 Samsung-dong, Gangnam-gu
KR-Seoul, 135-090, Korea
Tel: 82 2 559 0400
Fax: 82 2 556 8187

Asia Pacific

Malaysia
Parker Hannifin Singapore Pte Ltd
(Malaysia Branch Office)
Lot 558A, Jalan Subang 3
Off Persiaran Subang
Sungai Penaga Industrial Park
MY-47610 Subang Jaya, Malaysia
Tel: 60 (0)3) 5638 1476
Fax: 60 (0)3) 5638 1527

New Zealand
Parker Hannifin (N.Z.) Ltd
3 Bowden Road
Mt. Wellington, Auckland, New Zealand
Tel: 64 9 574 1744
Fax: 64 9 573 1529

Singapore
Parker Hannifin Singapore Pte Ltd
No. 11 Fourth Chin Bee Road
SG-Singapore 619702,
Republic of Singapore
Tel: 65 6887 6560
Fax: 65 6265 5125

Taiwan
Parker Hannifin Taiwan Co., Ltd
No. 40, Wuchuan 3rd Rd.,
Wuku Industrial Park
Taipei County, Taiwan 248, R.O.C.
Tel: 886 2 2298 8987
Fax: 886 2 2298 8982

Thailand
Parker Hannifin Thailand Co., Ltd
1023, 3rd floor, TPS building
Pattanakorn Road, Suanluang
Bangkok 10250, Thailand
Tel: 662 717 8140
Fax: 662 717 8148

Latin America

Pan American Division
7400 NW 19th Street, Suite A
Miami, FL 33126 USA
Tel: 305-470-8800
Fax: 305-470-8808

Argentina
Parker Hannifin Argentina SAIC
Stephenson 2711 esq. Costa Rica
1667 Tortuguitas
Buenos Aires, Argentina
Tel: 54 3327 44 4129
Fax: 54 3327 44 4199

Brazil
Hydraulics Division
Parker Hannifin Ind. e Com. Ltda
Av. FredericoRitter, 1100
Cachoeirinha RS, 94930-000 Brazil
Tel: 55 51 3470 8800
Fax: 55 51 3470 8808

Colombia
Parker Hannifin Colombia S.A.
Edificio Draza, Boleita Norte
Conchali - Santiago, Chile
Tel: 56 2-623-1421
Fax: 56 2-623-1422

Venezuela
Parker Hannifin de Venezuela, SA
Av. Principal con calle Miraíma
Edificio Daza, Boleta Norte
Caracas, Venezuela
Tel: 58 212 238 5422
Fax: 58 212 239 2272

Parker Hannifin Corporation
Hydraulic Valve Division
Elyria, Ohio, USA
Covering the Industrial, Mobile and Truck markets, each catalog is paired with an interactive CD. Call for your comprehensive guides today. 1-800-CParker
Parker Hydraulic Valve wants to keep you informed. Listed below are connection opportunities for you to resource additional information or speak directly with the industry’s most knowledgeable hydraulic valve professionals.

To order literature or locate a distributor by phone

1-800-C-Parker

For the latest hydraulic valve information
www.parker.com/hydraulicvalve

To locate your nearest hydraulic valve distributor
www.parker.com/hyd/distloc

For North America, Europe and the rest of the world regional offices, see Parker Hydraulics International Sales Offices at the back of this catalog.